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Abstract

A constitutive equation is proposed with a view to describing the rate

dependent mechanical response of metals at high temperatures. The equation

is of the endochronic type and derives its physical foundations from

deformation kinetics. Of importance is the fact that hardening is

associated with a change in the energy barriers brought about by the

inelastic deformation of a metal. The equation is used to describe the

results, by Ohno and his associates, of experiments on the creep response

of metals to piece-wise constant stress histories. The metal in the

present case is 304 stainless steel at 6000 C. It is shown that the theory

gives analytical results that are in agreement with exDeriment.

Of consequence is the fact that the constitutive equation applies to

three-dimensional stress or strain histories and is thus not limited to

those stress histories associated with creep.

The theory is also extended to large deformations. This

is done by usinR the internal variable theory. The resulting

constitutive equation is a statement to the fact that the Cauchv

stress is a qua ratic functional of the relative Finger Tensor

in terms of an intrinsic time wich is defined in the text.



1. Introduction

In the present paper we develop an endochronic theory of viscoplasticity

which accounts for the history of strain and strain rate on the stress response

of metals at high temperatures. The theory is based on the concepts of

endochronic plasticity (see typically Ref.'s [1], [2], and [3]), however, the

increment of intrinsic time scale is no longer proportional to the plastic

strain path but depends also on the rate at which the path is traversed. The

development of the theory is dealt with at length in the subsequent sections.

The resulting constitutive equation is used to analyze the creep response

of 304 stainless steel to piece-wise constant shear stress histroies at 6006C

and to compare the iesults with the experimentally determined creep response of

the same material at this temperature as reported by Ohno et als. in Ref [4],

The constitutive behavior of metals at high temperature where the strain

rate sensitivity of the mechanical response cannot be ignored, has been the sub-

ject of extensive research in recent years. We do not wish to give in this

paper an exhaustive review of the literature on this subject but merely cite

references which are typical of the enormous amount of work which is being done

ir this field. In this context, the works of Chaboche [5], Krieg [6], Malvern

[7], Haisler [8], Bradley [9], Leckie [10], Krempl [11], Walker [12], Miller

[13], and Hart [14], among others are mentioned. We also wish to cite the works

of Ohashi et als. [15], and Murakami and Ohno [16], and Ohno et als. [4] who

have been enjoying a measure of success in using a creep hardening surface

theory in describing the creep response of metals to piece-wise constant stress

histories, a subject with which we will be dealing in this paper. This aspect

of the mechanical response of metals has given rise to greater difficulties

than say, the stress response to piece-wise constant strain rate histories.
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The work of Krausz [17] and his co-workers also occupies a significant position

in the literature because of its more fundamental nature in that a microscopic

theory of deformation kinetics is used to gain understanding of the mechanical

response of metals at the bulk level.

In our initial approach to the subject, with specific attention to the

strain (creep) response to piece-wise constant, pure shear stress histories, we

used a strictly phenomenological approach, in the context of an endochronic

theory. Specifically in one dimension we probed the data with the constitutive

equation

Z ds
e= f J(z-z') dzF- dz (1.1)

0-

Henceforth convolution integrals such as the one appearing on the right hand

side of eq. (1.1) will be given in symbolic form according to eq. (l.la):

z ds def
f J(z- z') d-, dz' = J(z)*ds (l.la)
0-

c
In equation (1.1) ep has the same connotation as e , i.e., it is the inelastic

shear strain where

;p = c s(12
e= = e (1.2)

0

and u0 is the elastic shear modulus. We caution, however, that other defini-

tions of e have been used in the literature. The intrinsic time z was defined

by equation (1.3) where

dz d (1.3)
f(r,, )

and { = le I is the usual fashion. The dependence of f on c lends "strain rate

sensitivity" to the equation, which otherwise would be strain rate insensitive.
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While equations of the type (1 .1) (1.-2) and (1 .3) were shown to give satis-

factory results in the case of constant strian rate histories as demonstrated by

Wu and Yip [18,19] and Lin and Wu [20,211, we found that these equations did not

prove satisfactory in the case of piece-wise constant stress histories. Wi th

specific reference to the data of Ref. [4], it was found that f had to be essen-

tially independent of z, to account for the periodic creep response to piece-

wise constant cyclic histories. Thus, limiting f to a dependence on 4 only

resulted in a gross overestimate of the creep strain under cyclic conditions.

Correcting f so as to match the data gave rise to oscillations in f which could

not be accounted for by means of equation (1.3). Furthermore, the

phenomenological approach did not give any hint as to the physical mechanism(s)

responsible for such fluctuations in f. To overcome the difficulties we appealed

to the theory of deformation kinetics in the context of the internal variable

theory. The latter is treated briefly in Section 2 while the former is repre-

sented in detail in Section 3.
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2. Internal Variable Theory

Irreversible thermodynamics of internal variables is now a well established

field so we proceed to give a very breif outline of the theory for the sake of

completeness. We limit ourselves to small strain fields. In the Helmholtz for-

mulation the thermodynamic state is described by the free energy density * which

is a function of the strain tensor E the temperature T and n interval variables

r which, for thermomechanical processes, are tensors of the second order.

The stress 6 and the entrpy density I are then given by equations (2.1) and

(2.2)

= (2.1)
7E

(2.2)aVT

In the case of a spatially uniform thermal field the condition of positive rate of

irreversible entropy gives rise to the inequality

r . q > 0 , iq A # 0 (2.3)

r, not summed.

In the linear version of the endochronic theory * is a quadratic function of
r

its arguments and the evolution equations for q have the form

dqr

+ b •*= (2.4)r ,r T

r
r not summed, where n such equations exist, one for each variable q , and b

are positive definite tensors of the fourth order.
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When isothermal conditions prevail and the solid is initially isotropic and

the tensors b are constant, then equations (2.1) and (2.4) combive to give riser

the integral constitutive equations

s = 2p(z)*de (2.5)

a = 3K(z)*dc (2.6)

where s is the stress deviator, e the strain deviator and a and e the hydro-

estatic stress and strain respectively. The kernels h(z) and K(z) are sums of

positive decaying exponential functions, i.e.,

-arZ -XrZ
r e ,K(z): Kr e (2.7a,b)

r r

where r , K r and X are all non-negative.

In the generalized endochronic internal variable theory the evolution

equations are expressed in terms of the intrinsic times of the mechanisms of
r

internal motion. See Ref [22]. Specifically to each q the theory ascribes an

intrinsic time z r such that the equations of evolution become

dqr

+ b d r : 0 (r not summed) (2.8)Sr r dzr

r =l,2 ... n.

In the endochronic theory of plasticity of metals as it has been used in the

past

zI = z2  z ... = Zn (2.9)

and the elastic bulk modulus K in constant, i.e, the material is plastically

incompressible. Also,

dz = f(- ) d = IdePi (2.10a,b)
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and

P ~d.
de p  de -2- (2.11)

2 0

where Po is the elastic shear modulus. The function f is positive and non

decreasing. Thus in the case of plasticity, and in the context of the above

assumptions, equations (2.5) and (2.6) have the form

s = 2u 0 (z)*de (2.12)

G = 3KE (2.13)

Substitution of equation (2.11) in equation (2.12) gives an equivalent consti-

tuitive equation which relates s directly to the history of ep . Thus

s = 2p(z)*de p  (2.14)

See Valanis, Ref. [23]. The relation between p and .L is given in terms of their

Laplace transforms in equation (2.15).

- (l - P- (2 .1 5 )

W 0

It has been found that in the case of metals at room temperature p and f are

well represented by the relations
1 -kz-b

1 0 - e , f = 1 - de (2.16a,b)

where P0, a, a, b are positive and k is non-negative.

In the Gibbs formulation the thermodynamic state is described by the free

energy density 0, which is a function of the stress tensor a the temperature T

and n internal variables qr which, again, are second order tensors. The func-

tion o is related to * by the equation
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G j :j -. .(2.16)

The counterparts of equations (2.1) and (2.2) are

(2.17)

and

n -(2.18)

whereas the positive rate of irreversible entropy gives rise to the inequality

"r , q I 0 (2 19 )

for each r, where - is the internal microforce for the internal mechanism rr

while the evolution equations for q are, in the case of the generalized

endochronic formulation

3 + b • qr 0 (2.20)
F r dz r"r

If we now stipulate that * is quadratic in its variables and dz = dz forr

all r, and b r are constant then in the case of isotropic materials and isothermal

conditions, equations (2.17) and (2.20) combine to give the constitutive

equations

1e = 2 L(z)*ds (2.21)

1
c = T N(z)*do (2.22)

When plastic incompressibility applies N is a constant and equal to 1 (see

equation (2.13). Also v and L are related by equation (2.23).



u(z)*dL H(z) (2.23)

where H(z) is the unit step function.

In view of equation (2.11)

P (2.24)

Thus

= e J(z)*ds (2.25)7ep

where

J(z) : - H(z) + L(z) (2.26)
2P 0

The functions J(z) and P(z) are also related as shown in equation (2.27)

J(z)*dp = H(z) (2.27)

Spectrum of Intrinsic Times

Of the n internal mechanisms let group r have an intrinsic time z r. Then to

the group r of internal variables nr in number, there will correspond an intrin-
m

sic time z r. Evidently I n r n where m is the number of groups.
r~l r

A straightforward analysis using equations (2.16) (2.17) and (2.20) when € is

quadratic isotropic function of eij and q. ( and b are constant isotropic

tensors leads to the equations

P n

e= J (z )*ds (2.28)
~ r=l

Cp 1, : Na (2.29a,b)
= 0, E 3
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where plastic incompressibility has been observed. They physical interpretation

of equation (2.28) is that each of the mn groups of mechanisms, say r, contributes

to the total strain a partial strain ep such that

I er e~ (2.30)

where

ep J(z )*ds (2.31)

The intrinsic time z r is related to c by the equation

dr f
r

where f r is the hardening function of graph r.

The need for this more general approach which was presented in a previous

reference [22], has been discussed in the introduction and hat to do with the

fact that one intrinsic time is just not sufficient to describe the creep

response of metals to piece-wise constant stress histories. The physical justi-

fication for this possibility is discussed in the section on deformation kine-

tics, but simply put, it means that the hardening function f is not the same for

all mechanisms at high temperatures, though the assumption of an f common to all

q r ufcsat room temperatures as demonstrated in our work on endochronic

plasticity. The appeal to deformation kinetics is necessitated by the desire to

determine how f is influenced by the micro-mechanical process which accompanies

the inelastic deformation.



3. Deformation Kinetics

The theory of deformation kinetics was founded by Eyring [241 and its appli-

cation to rate processes has been pursued by Eyring, Krausz [241 and their

co-workers with a great deal of success.

In keeping with the ideas of deformation kinetics we attribute macromotion

to additive effects of micromotions brought about by local distortion of atomic

'energy barriers". At this point it is essential that we distinguish between

diffusion of particles and diffusion of dislocations or vacancies. The distinc-

tion may be stated most simply in terms of the mean free path 2k of a particle.

In the case of particle diffusion 2. is large compared to its counterpart in the

case of dislocation or flaw diffusion. If a particle travels n units of distance

a" before coming to rest, then 2L = na. However, if a flaw travels n units of

distance a, the mean free path of a particle is still a, because a different

particle partakes each time in the motion of the flaw. Thus in the case of par-

ticle diffusion n >> a. Most important, however, is the fact that, in either

case, each unit of motion consists of an atom moving across an energy barrier.

In addition we would expect that in the case of flaw or dislocation diffusion

the energy barriers would be lower than those of particle diffusion. In fact,

the activation energy of self diffusion is lower at low homologous temperatures

(where dislocation motion is dominant) than at higher temperatures where par-

ticle diffusion dominates the process.

To apply the ideas of deformation kinetics to the viscoplastic deformation

and flow of solids we appeal to a simple atomic model whereby prior to the

application of stress each atom of the solid is situated at the bottom of a sym-

metric potential well. A typical potential well with the accompanying local

potential surface is shown in Figure 1 by a solid line. The forward and back-
rward barriers are equal and both have a height c ~ When stress is applied,



the atoms will be displaced from their initial positions and the local potential

surface of an atom will distort. The distorted potential surface is also shown.

The effect of the distortion is to reduce the forward barrier by an amount wfr

r
and increase the backward barrier by an amount wb. It will be shown that this

type of barrier distortion will give rise to an average forward motion of the

atoms occupying potential wells with barriers 
cr

Boltzmann Statistics. To determine quantitatively the effect of barrier

distortion on the mean atomic motion we appeal to Boltzmann statistics.

Accordingly the probability of finding an atom in an energy state ci is given by

equation (3.1):

-Bei~
p= ae (3.1)

where
-ci I

= 1/) e , 8 = . (3.2a,b)
i

in the usual notation.

Let N r be the number of atoms occupying potential wells with initial energy

r
barriers c0 . The probability that an atom is in an energy state greater than

r * r
Co  is p0 where

P= exp (-8c ) (3.3)
r r

Ci >C0

States ci such that > C r we have called activated states [25] differing from

r
Eyring. Thus, the number of atoms in an activated state is NrP0 . As the

barriers are symmetric the probability that an atom will move forward is equal

to the probability that it will move backwards so that the net motion (ave-age

displacement) of the atoms N is zero.r
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When the potential energy surface is distorted the number of atoms Ar par-

taking in a forward motion is now changed to

r
Ar = N r a exp (-Be.) (3.4)

Ci >O-Wf

while the number Br of atoms partaking in as backward motion is

Br = Nr I a exp (-Be ) (3.5)
r r r

C i >C o+Wb

The net number of atoms that partake in a forward motion is, thus, A - B wherer r
r r r

Ci<C +wb
A - B : N Z exp (-Be. (.6

rr r r a 1 (3.6)

i >C b-Wf

To evaluate the sum on the right had side of equation (3.6) we shall assume that
r r

wf and w are both small. In this case we represent the distribution off b r inter
energies ei in the vicinity of e o in terms of the local tangent to the distribu-

tion at cr by writing

r r +kr (3.7)Ci 0  (i-

where i is the value of i at e. r and k is the slope of the distribution

which is a function (in general) of E0 . See Figure 2.

Substitution of the relation (3.7) in the sum on the right hand side of

equation (3.6) leads to the simple expression

-Be r
e 0

sinBrW r
Ar - Br = 2N r Bkr (3.8)

1 -e

where
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r r r

,r wf-wb r Wb+ wf (3.9,10)2 0 2

r r
-BCr -Bk

We note that the terms e 0 and 1 - e are related to the initial state, i.e.,

the barrier height and the energy distribution, while the terms sin Bwr and

exp (-BAcr) are brought about by barrier distortion.

The mean velocity vp relative to the lattice of the atoms in group r may nowr

be calculated in terms of the barrier distortion parameters N and Ac Ifr 0
X is the mean lattice distance and T is the average time taken by the atoms of

group r to traverse that distance across the barrier eo then

p0

VPr = (k/ r )(A - B )/N (3.11)
r r r r r

We now define an internal variable qr by the relation

qr = vr/X (3.12)

Evidently in view of equation (3.11)

qr = (Ar - Br )/N r Tr (3.13)

In view of equations (3.8) and (3.13)

2ae 1 A
q ( -)e sinh B w (3.14)r -_kr  T r r

S- e

In so far as steady creep is concerned the assumption is usually made that

of all the operating mechanisms only one survives in the steady state, i.e.,

r = 1 and w, is proportional to the stress (in one-dimensional stress fields).

However, in the case of transient creep it is the local microforce, i.e.,

-on the group r that will determine the barrier distortion. Thus, followingq r as

Ref. [25], we let w be proportional to - -according to equation (3.15)
r qr
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W -C (3.15)
r r aqr

where Cr may depend on temperature.

Thus if we let

kr  r

O/(1 - e e /2a (3.16)

r
r 01 Ba=

bOO q + - e sinh (a C-) 0 (3.17)

This is an "internal variable" form of the equation for the mean irreversible
r

motion of the group r of paricles facing a potential barrier 6 .

Discussion of equation (3.17). As we pointed out equation (3.17)

establishes a physical meaning for the internal variables in that q r is the mean

displacement relative to the lattice of a group r of particles facing a poten-
r

tial barrier of magnitude eO . The above equation was published by Valanis and

Lalwani in Ref. [25], with Aer = 0. The appearance of the term A r in equation0 c 0

(3.1) was inferred as a result of our effort to describe analytically the creep

response of 306 stainless steel to piece-wise constant stress histories. This

will be discussed in Section 4.

The time to traverse the barrier, i.e., T r is also of central importance in

equation (3.17). Eyring used simplifying assumptions to arrive at the conclusion

that T r is proportional to the square root of the ambient temperature. However,

one can show that it depends at least in part on the barrier shape and height

(Ref. [25)). In this work we have found that is also sensitive to the plastic

strain rate. This is to be expected sind Tr depends on the barrier confor-

mation, which in turn depends on the plastic strain. The rate of plastic strain

affects the rate of barrier distortion which must affect the traversal time Tr



Consider now two processes (a) and (b) the first of which is proceeding at a

faster plastic strain rate than the second. With regard to the forward motion

of a particle, the height of the barrier will be diminishing faster in case (a)

than in (b), so that the forward moving particle will be encountering a con-

sistently lower barrier in case (a) than in (b). It follows that the time to

cross the barrier in case (a) will be shorter than in case (b). Thus

T <Tbwhenever~ > b

The above inequality will be satisfied if

T 0 (3.18)
g( )

where T0is a constant and g is a monotonically increasing function of ~.In

this work we have set

g() 1 - (3.18a)

where m is a material constant.

Deformation kinetics is brought into accord with linear irreversible ther-

modynamnics if in equation (3.17) the argument of the hyperbolic sine is suf-

ficiently small for the approximation

sinh (B C 11 ) - B Cr1 (3.19)r aq ~ r -

to be appropriate. In this event equation (3.17) becomes a standard linear evo-

lution equation, i.e.,

b rq + a± 0 (3.20)r aqr

where T ~ r

b r =b r rL-e 0 (3.21)
00 BCr
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In view of equations (3.18a), (3.20) and (3.21) one finds that the "endochronic"

form of equation (3.20) is

r dqr  aebd + I 0 (3.22)
b -+Qr r

where

br bor 0 (3.23)

r

and

dz - dz (3.24)r mf r

rBA0
f r e (3.25)

Thus in deformation kinetics terms the rate sensitivity is attributable to the

time to cross the barrier while the hardening (softening) is related to the

change in the mean height of the barrier as a result of the stress history.

Thus if A 0 increases the material hardens while if it decreases the material
0

softens in accord with our physical intuition regarding such processes.



17

4. Analysis of Piece-wise Constant Stress Histories in Pure Shear.

We begin with the integral

ep = J(z)*ds (4.1)

where ep represents a shear creep strain component, s is the corresponding shear

stress component and J the appropriate creep function. As usual

dz = (4.2)g(!)f

where g is the rate sensitivity function and f the hardening function. Also

d = kIdePi (4.3)

where k is an appropriate scalar constant. Typically, it ep denotes a creep

shear strain component and

d = IdeP (4.4)

then k = /2 and J is the creep function in pure shear.

For our purposes it is more convenient to write equation (4.1) in the expli-

cit form

t 
d

ep = J(z(t) - z(t')) -dt' (4.5)
0

for reasons that will become apparent.

4-.1. Monotonic Creep in the Presence of a Constant Stress History

In this specific case

s(t) = s H(t) (4.6)

where H(t) is the unit step function whose "derivative" is the Dirac delta func-

tion. In this instance substitution of equation (4.6) in equation (4.5) gives

the creep response in the simple form
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ep = sO J(z) (4.7)

where s is the amplitude of the step function of applied stress. It is

apparent from equation (4.7) that if the form of J(z) is known then knowledge of

z(t) determines creep strain in terms of the stress amplitude so. We caution

that ep is not necessarily linear in s since z(t) depends on s0 as we shall

demonstrate.

To this end differentiate equation (4.7) with respect to t and use equations

(4.2) and (4.3) to find that under monotonic conditions

g(C) = ks0  J'(z)f (4.8)

where J'(z) is the derivative of J with respect to z. Thus

{k so J(z) f-
1 } (4.9)

But from equations (4.7) and (4.3)

= k so  J'(z) z (4.10)

Thus from equations (4.9) and (4.10)

g -l{ksod'(z)f-I}

Z - k soJ.(z) (4.11)

Equation (4.11) gives z(t) by numerical integration if f is known.

To assign analytical forms to the functions J(z) and g(S) we appeal to

experiment and the underlying assumptions of endochronic plasticity. It is com-

mon experience that metals become more strain rate sensitive as the temperature

rises. However, the spirit of the endochronic theory is that this change is

brought about not by a change in the form of J(z) but by virtue of g( ) which

is evidently dependent on temperature even though this dependence is suppressed

in equation (4.2).
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At room temperature where rate effects are not significant J(z) is repre-

sented very closely by the analytical impression

J(z) = J z (4.12)

where a is the vicinity of 0.85 for a number of metals. This form is retained

by virtue of the above argument, at higher temperatures.

Experiments also indicate that under monotonic creep conditions

ep  = F(s0 ) tB  (4.13)

i.e., that the stress and time dependence of creep strain are factorable and

that the time dependence is represented very closely by a power law. If during

monotone creep f is a constant - which was found to be so for one component of

the creep - then for equation (4.13) to hold 9(S) must also be a power function.

Thus we have set

= m (4.14)

In view of these stipulations equation (4.11) now becomes

1 1-m (a-l)(l-m)
fM m
f z = (k a s0 Jo

)  z (4.15)

Special solutions to equation (4.15). We proceed to give some special solutions

to equation (4.15) when (a) f is constant and (b) when f is a power function of

z. When f is constant the solution is given by equation (4.16):
8'

n' B 4.6
f m z = A (k a so 0o )  t (4.16)

where
A= B' m/l + am -, n' = 1- (4.17)

In the case where f = f0 z , where 0 ) 0, the solution to equation (4.15) is

given by equation (4.16) as before except that now the constant 8' is given by

equation (4.18):
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B' =m/l + am - a + € (4.18)

and the constant f on the left hand side of equation (4.16) is now denoted by f0 "

Knowing z(t) one may now calculate the creep strain ep by use of equations

(4.7) and (4.12), in conjunction with equation (4.16). Thus
B

e p = Aa f 0  (ka) n - l (sJo) n t 8  (4.19)

where

I + an' = n, B' = B (4.20a,b)

Discussion. So far we have represented the creep strain by a single integral.

We have also represented the creep function J(z), the strain rate sensitivity

function g( ) and the hardening function f(;) by analytical forms of the power

type. By analysis we then arrived at equation (4.19) which is basically of the

form

ep = B sn tB (4.21)

where B is a constant, whereby the monotonic creep strain depends multiplica-

tively on the stress amplitude to the power n and the time to the power B. This

form has appeared frequently in the literature where it has been arrived at by

analysis of the data. It does not for all creep data and certainly not over the

entire range of stress.

What is important, however, is that the creep strain depends on time

according to a power law (equation (4.21) in accordance with observation as per

equation (4.13) while the dependence on stress is of a more general type. One

can change the dependence of ep on so by changing the analytical form of J(z) or

g(K) or both but it seems that this would vitiate the dependence of ep on a

power function of t. Two other avenues are, however, available. One is to

introduce a spectrum of intrinsic times, as discussed previously, i.e., a series
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of integrals on the right hand side of equation (4.1). The other is to intro-

duce a stress dependence in the hardening function f . This has been found to

be the case in other materials such as polymers.

Specifically, if one sets

f = f 0(s 0) (4+.22)

then under monotonic creep conditions in the presence of constant stress

equation (4.19) will have the form given by equation (4.13), for an appropriate

choice of the function f.

This approach alone, however, has been found inadequate to describe creep

under cyclic piece-wise constant stress histories. This question as well as a

constitutive equation involving more than one intrinsic time will be discussed

in the next section.
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5. Specific Constituitive Equations for 304 Stainless Steel

In the application of the theory to 304 stainless steel at 600°C and speci-

fically to the experimental data generated by Ohno et als. (Ref. [4]), two

terms were retained on the right hand side of equation (2.28), i.e.,

eP = 1(z 1)*ds + J 2(z 2)*ds (5.1)

For the purposes of analysis and presentation of the results it is more con-

venient to write equation (5.1) in the form

ep = e + ep (5.2)

where

P = J (z )*ds (5.3)
r r r

r = 1, 2. In this case two hardening functions exist in the sense of equation

(5.4)
dz 1

dz = f- - (5.4)

r f r

where m is a material constant found to be equal to 0.12. Also two creep func-

tions J1(z) and J2 (z) are needed and these were given the analytical forms shown

in equation (5.5):

J 3 1 al = 2 z (5.5 a,b)

where a = 0.836, a2 = 1. J = 2.34 x l0-3 MPa, J2 = 1.58 x 103 MPa. It still00 '2 5 l -

remains to determine the form of the hardening functions. In order to match the

monotonic data f2 was represented by a power function of the form

f 2
f2 = z (5.6)

where 02 = 0.196.
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On the other hand f could not be represented as a state function of, say, s

and z, or any other variable for that matter. Rather, the experimental cyclic

results of Ref. [4], gave strong indication that f should be given in differen-

tial form of the type

d log f1  = dF(IsI, z1 )Iz (5.7)

l

Note that the right hand side of equation (5.7) is not an exact differential and

hence f is a function of the stress history. The physical implication of

equation (5.7) is that a change in z does not affect fl if during the change

the absolute value of the stress s remains constant. A mathematically more

explicit form for f1 is

DF

d log f, =  ---F (IsI, z,) disl (5.8)

The logarithmic form is not fortuitous but is a consequence of the physics of

deformation kinetics and specifically equation (3.25) in view of which

log f = B A (5.9)

d log fl : B d (A EO) (5.10)

The implication is that in mechanism 1 the mean barrier height will change when

the absolute value of stress changes but not otherwise. The constituitive

description of the material is complete once the function F(Isi, z1 ) is known.

The function F is given below for various valuesof Is! (in MPa):

F(134.2, zl) = 2.25 + 1.3(0 - e - 30zl)

F(120, z1) = F(134.2, z 1)

F(90, zl) = 2.19 + 0.9(0 - e - 50zl) (5.11a,b,c,d)

F(60, z1) = 1.86 + 44(l - e 8 5z,)
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In addition the value of the hardening function at zero stress and zero value of

z is set at 0.1054. This value together with the relation.

log f(Olls ) - log f(O, Is 2) = F(O, fsIl - F(O, Is12) (5.12)

where s1 and s2 are any two stress levels determines f for various values of the

initial stress applied at the onset of a creep experiment.
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6. Comparison with Piece-wise Constant Stress Experimetns of Ohno et als.

Monotonic Creep Experiments

The strain response to a constant stress history is obtained by application

of equation (4.19) in conjunction with equation (5.2). Specifically

2 r -( )r nr -l nr Or
eP I A fOr (kr) (S J O) t (6.1)

r=l O ~

in the presence of the constraint

8 =1 2 = 6, nI = n2 = n, mI = m2  m (6.2)

so that equation (6.1) becomes

n 2 n- S63
ep (s0 )n t 1 A r(f Or) (ka r O n (

r=l

In the case of the linear model (2), f02 is a constant. However, in the

non-linear model (1), f01 is a function of Isi. This dependence is determined

by adjusting fop for various values of IsI, so as to obtain optimal agreement

between theory and experiment in the case of monotonic creep. The function

f01 (Jsl) is shown in Figure 3. With all the other constants known, the

descriptive capability of the theory is shown in Figure 4.

Cyclic Creep Experiments

Following Section 2 let ep be the r'th partial shear strain such thatr

e r Jrz r )*ds (6.4)

and

P = er (6.5)
r=l

where in our case m = 2. For our purposes it is more convenient to write equation

(6.4) in the form
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ep  r J [z (t) - Z(tr)] ds dt' (6.6)
r r r

0

in the specific case of piece-wise constant stress histories of the type con-

sidered by Ohno et als.

ds = S {6(t) - a 6(t-t l ) + a 6(t-t 2 ) .... } (6.7)

dt 0 2

where 6(t) is the Dirac delta-function, s) is the initial stress amplitude and a

is a constant. In this set of experiments two parameters s0 and "a" define the

history of stress - in addition to the reversal times tl , t2 ... tn .

Substitution of equation (6.7) in equation (6.6) and integration gives the

explicit result

N

P = so {r (Zr) + a N (-1)r J (ZrZrn)} (6.8)
n=l

or

eP = s y(z ) (6.9)
r 0 r

where y(zr) represents the bracket on the right hand side of equation (6.8). We

differentiate equation (6.9) to obtain

e r o (Zr) Zr (6.10)

- dy

where y'= dyr  Use of equation (5.4) then gives the result

er = s (6.11)

r 0 f rz

Now we take absolute values of both sides of equation (6.11) and use equation

(4.3) to obtain
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,m

fr C s o  k ly (6.12)

But in view of equation (5.4)

1

= (f z )T  (6.13)r r

Equations (6.12) and (6.13) combine to give the following differential relation

between dzr and dt
1

r r

dt = (6.14)

0kso

Integration of equation (6.14) gives the relation between zr and t.

Substitution of z (t) in equation (6.8) then gives the desired relation eP(t)
r r

and, therefore, eP(t) upon use of equation (6.5).

In our particular case

ar

anr 
=  J Or Z r 

(6.15)

and

Yr r r or zr + a7 (-l) JOr (ar - arn) (6.16)

r n=lOr r r

In Figures 5, 6 and 7 we show the experimental values of eP(t) obtained in Ref.

[4] for the stress histories shown. Also shown are the analytical functions

eP(t) obtained (a) by the use of the present theory and (b) as reported by Ohno

et als. in Ref. [4] using their own theory.

The most significant difference in the predictive capability of the two

theories lies in their depiction of the creep recovery slope at points of stress

reversal. The endochronic theory predicts an infinite slope, in agreement with

experiment, while the theory by Ohno et als. depicts a finite much shallower

slope. Overall the predictive capability of the endochronic theory is very good

for the type of stress histories discussed here.



7. CreeD in Tension-Torsion

In this section, we examine this problem in the complex case

where both the torsion and tension histories are piece wise

constant junctions of time. In addition in the complexity of the

stress histories, we have the added coupling effect which is

observed experimentally. In other words, the cyclic creep in

torsion is affected by the presence of tension. It will show that

this effect is accounted for satisfactorily by the definition of

intrinsic time. In this section we shall address the experiments

of ohms [4] where cyclic creep in shear is carried out at constant

tensile stress.

The basic equations are:

b j bb= fr (7.1)
r= 1

= E(Zr) * d§ (7.2)

dZr  = fr -mr (7.3)fr

d5 - iidffP II (7.4)

Jr Jr (7.5)

fr - Zr (7.6)



Thus the actual solid is represented by two inelastic model solids

in series. The pertinent material functions and constants are

the following:

a1 = 0.836, J1 = 2.34x10 3 MPa

a 2 = 1.0 J2 - 1.58X10- 3 MPa

ml = m 2 = 0.12

01 = 0, 42 = 0.196

In this section f, is a constant for simplicity while in section 6

it was an elaborate function designed to match the experimental

data as closely as possible. Thus in this section, the

effectiveness of the theory is demonstrated without the need for

the complexity of representation of f, adopted in section 6.

The stress histories involved in the experiments of Ref. 4 are

of the type

aij (k) = aoij Ha (t) (7.7)

where
n

Ha(t) - H(t) - a E H(t-rto) (7.8)

and H(t) denotes the Heaviside step function.

In the following denote the axial stress by aa, the axial

creep strain by eP, creep strain by eP. In all the experiments

considered below

a1 - l H(t) (7.9)



while ohile Ha(t) (7.10)
a

for values of a equal to 0, 1.5 and 2. Plastic (inelastic)

incompressibility is assumed; i.e.

P 0 (7.10)
pk

In the presence of equation (7.10), equations (7.1) and (7.2)

become

= Jr(Zr) * ds (7.11)
r

ir - Jr(Zr) * d6 (7.12)
Ir 3

substition of equation (7.8) in equation (7.11) gives the explicit

result:

N
e4 so {Jr(Zr) + a E (-i)n Jr(Zr-Zrn)) (7.13)

n=1

pr 2(.4
elr 61 Jr(Zr) (7.14)

The creep strains of eP and EP were then determined numerically

following the method given in detail in section 6. The results

are shown in Figures 8, 9 and 10 for corresponding values of a=l,

1.5 and 2. Comparison with data shows good qualitative agreement.

However a refinement of the representation of the hardening

properties of the material seems pertinent.

The work of this section was done co-jointly by K.C. Valanis

and S.D. Lee. The latter is a graduate student in Civil

Engineering at the University of Cincinnati.



8. Larcre Deformation Theory

In this section we extend the theory to the domain of large deformation. This

is an important develc42ent because high teerature processes, during which
materials are strain rate sensitive, involve large deformations. our target

here is metals.

A great deal of effort has been expended in recent years to develop
constitutive eqations pertaining to large deformation of metals. The problens
that one encomters in the formulation of sml deformation theories are
magnified when large deformations are involved. When the problem is approached
frm a yield surface point of view, one has to be concerned with the evolution
of its gecmtry in stress space as the material deforms and its translation in
stress space ( i.e., a constitutive description of the back stress - which has

been the central problem in classical plasticity).

In addition, and irrespective of one's approach, the question of
appropriate separation of the inrement of plastic strain (defined in large
deformation terms) into elastic and plastic parts mist be addressed and
resolved. How this is to be done is a matter of differing opinion. Of course
over and above these considerations, the principle of isotroy of space must
mst apply. This last requirnt creates other difficulties associated with
"objective rates" when iremental theories are cnsidered. In strictly
mattical theories the choice of a physically "correct" objective stress
rate (say) is not obvious a priori.

In the present paper we side-step a umber of the above problems by
utilizing the concepts of endochronic plasticity in conjuction with the theory
of internal variables to arrive at a constibative equation of the hereditary
type whereby the stress tensor (in terms of its cariaonents in the
material frame) is a quadratic functional of the history of the Right Cauchy-
Green tensor. Plastic incxmpessibility is assumed and the elastic deformation
is neglected relative to the large plastic deformations considered in the
paper.



The theory is applicable to both strain rate deperdent and strain rate

independent processes. In the applications a constant strain rate has been

assm . This is equivalent to a constant plastic strain rate, in the light of

the assumption that the elastic component of strain is negligible.

A number of solutions of practical interest have been obtained in

closed form or by finite element techniques in strictly Lagrangian terms thus
obviating the mnmrical difficulties associated with Eulerian formulations.

Also difficulties associated with objective rates are not encontered because

of the integral form of the constitutive equation. Solutions associated with
bending, torsion and inflation are cbtained in closed form. Finite element
solutions pertaining to forging of blocks have also been obtained and will be

discussed.

The constitutive equation was first tested by application to the
simple hcmogereos extension of a bar in the presence of a memory kernel that
gives rise to asymptotically constant Cauchy stress. monotonic behavior was

4 observed with no instabilities. The Piola stress first increased and then
decreased with stretch as observed in experiment. The problem of plastic flow
in a tube (extrusion problem) was then solved in closed form. Substantially
flat displacement profiles were obtained, in agreement with observed behavior.

The proble of the large inflation of a thick sphere was then
solved again in closed form revealing a geometric instability at a critical

value of the internal pressure, as is commonly observed. Finally the finite
bending of a beam was solved revealing the observed shift of the neutral axis
toward the compressive side and strongly non-linear stress distribution within
the beam.

The 'upsettingln ' of a block, i.e., forging by means of a vertically

applied displa , was solved by finite element methods. The initial
barrelling eventually gave way to a bone-shaped configuration and the vertical
stress at the outside boudary went fram compressive to tensile as expected.

The ease of the computation is emphasized.

7he body of this work, which served as the Ph.D. thesis of Dr. J.



Wang, is riot given in this section, but is append~ed as Appendiix I
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ABSTRACT

The object of this research is an extensive study of an endochronic

constitutive relatiorr for both incompressible and compressible materials

undergoing finite plastic deformation. Attention, in this dissertation, has

been paid to the foundation, application, and computational capability of

the theory.

In the first part of this dissertation the endochronic constitutive

relation of plasticity for incompressible finite deformation, as proposed by

Valanis in 1978, is reviewed. This relation is formulated in the material

frame of reference which is convenient for problems involving a definite

initial configuration such as a solid as opposed to a fluid. A set of

academic and practical problems of interest, consisting of finite plastic

uniform extension, finite plastic shear flow in a pipe, finite plastic

torsion, finite plastic bending, and finite plastic spherical expansion, are

solved analytically. Closed form solutions are obtained for all problems by

the use of a semi-inverse method.

In the second part of this dissertation the theory is extended to

account for plastic compressibility, incompressibility is pivotal in the

development of classical theory of plasticity. However, it is only an

assumption and a simplification of the actual situation. In the endochronic

theory, plastic compressibility can be accommodated. This is done by

modifying the free energy density function of the plastic deformation

process by adding a term *0(1,) which reflects the compressible plastic

viii
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deformation and then developing the constitutive relation for a special

functional form of *i0(I,).

To solve more general engineering problems, a numerical method is

developed using the powerful finite element technique for boundary value

problems for both compressible and incompressible materials. In the

compressible case, a special form of *, Is used to demonstrate the

application of the theory. The finite element formulation is referred to the

material-system, by using a Lagrangian formulation.

A computer code Is then established to solve a plane strain boundary

value problem in the presence of compressible plastic deformation by the use

of linear triangular elements. A specific problem associated with a metal

forging process, that of "upsetting" a block is analyzed numerically using

the code. All relevant parameters of the problem are investigated. The

results obtained give a very reasonable description of the forging process.

The study of this dissertation shows that the endochronic theory, which

is based on a sound thermodynamic foundation, also has a powerful

computational capability for solving practical engineering problems that

Involve large plastic deformation.

ix



CHAPTER I INTRODUCTION

Finite plasticity as a subject dealing with a time-independent, rate-

Independent, large permanent strain during a deformation process, has very

significant application in engineering problems. In ductile metals, under

favorable conditions, plastic deformation can continue to a very large

extent without failure. For instance, except for castings, which are formed

from the liquid state, all metal products are subjected to at least one

metal forming process during their manufacture. In metal forming processes

such as forging, drawing, extrusion, rolling, stamping and cutting, etc.,

the products suffer a considerable shape change. The deformation is

substantially permanent and involves predominantly large plastic strains.

Other processes include the plastic bending of beams and plates, the

overstraining of spheres and cylinders which are widely used as pressure

vessels in the chemical industry for example. A thorough understanding of

the mechanics Involved in large plastic deformation is very Important to

engineering application and design. Moreover, the advancement of many

branches of solid mechanics such as fracture and fatigue as well as soil

mechanics, rock mechanics, geophysics, and geology, etc., is closely related

to the development of a sound plasticity theory. Recently with the

availability of high-speed computing facilities and the development of the

sophisticated material testing machines, many researchers have been

motivated to develop more advanced theories of plasticity. Hence many of the



simplifying assumptions in plasticity and many empirical formulations are no

longer necessary.

A difficult element of classical plasticity is the concept of the yield

surface, which leads to experimental and numerical difficulties in attempts

to describe and analyze the two- or three- dimensional response of a

material. Valanis C1,2] circumvented this difficulty by proposing, in 1971,

the endochronic theory, which does not require the concept of yield for the

description of plastic behavior of materials. During about 15 years'

development, a number of publications documented the potential of the theory

to describe the mechanical response of materials under conditions of small

plastic deformation and proved that the endochronic theory of plasticity was

able to predict not only the salient features of the plastic behavior of

materials, but also a number of observed features of plasticity that lay

beyond the scope of the existing plasticity theories. It is natural then to

extend the endochronic theory to the other subjects in plasticity such as

problems of large deformation, rate-dependence, and thermomechanical

coupling, etc. In this dissertation, we study extensively how the

endochronic theory can be applied to problems in the domain of large plastic

deformation and how it can be used to solve relevant engineering problems.

Before proceeding with the development of the theory, we will review briefly

the history of the classical and endochronic theories of plasticity.

Plasticity as a science is generally regarded to have begun in 1864

when Tresca £3] published a preliminary account of his experimental results

on punching and extrusion and formulated a yield criterion which states

that a metal yields plastically when the maximum shear stress attains a

-2-



critical value. Early contributions to the theory of plasticity were also

due to Saint-Venant C4] and Levy C51, who in 1870 applied the Tresca yield

criterion to establish relations between stress and plastic strain-rate for

two-dimensional and three-dimensional plastic deformation.

In the following 60 years development of the theory of plasticity was

slow. After 1921, there were important contributions from Von Mises C6],

Hencky £7], and Prandtl C8]. Von Mises suggested a yield criterion on the

basis of purely mathematical considerations and Hencky later interpreted

that this yield criterion implies that yielding occurs when the elastic

shear-strain energy reached a critical value. Prandtl showed the plane

plastic strain problem was hyperbolic and calculated the loads needed to

indent a planar surface. Hencky continued Prandtl's work and discovered

simple geometrical properties of the field of slip-lines in a state of plane

plastic strain. Lode C9] and Taylor and Quinney [10] carried out experiments

on various metals under combined tension and internal pressure. The

effective application of plasticity theory to technological processes began

in 1925 when Von Karman £11] analysed the stress distributioc, during the

9 rolling of metal strip by an elementary method. In the following year Siebel

£12] and Sachs £13] presented similar theories for wire drawing.

About 1950, the classical mathematical theory of plasticity entered a

fully developed period. D.C. Drucker £14] generalized the meaning of work

hardening and related it to the stability'of plastic deformation by

postulating that (1) the work done by an external agency during the

application of additional stresses is positive for a working-hardening

material, and (2) the net work done by an external agency during a cycle of

-3-
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addition and removal of stresses in a material undergoing plastic

deformation is positive. This led to the normality of plastic strain rate

vector with respect to the yield surface and convexity of the yield surface.

The Von Mises flow rule was then derived, which provided the relationship

between the loading (yielding) function and plastic flow. In 1961, Ilyushin

[15] stated his postulate of plasticity, which he claimed to be a

generalization of Drucker's postulate. A third aspect of the classical

plastic theory, besides the initial yield criteria and an associated flow

rule, includes the isotropic hardening rule by Hill [16] and Hodger C17],

kinematic hardening rule by Prager [18], modified kinematic hardening rule

by Ziegler 119], and Mroz's rule of hardening modull £20].

The theories to describe the relation between stresses and strains are

of two general classes, which are total strain (deformation) theory and

incremental strain (flow) theory. The total deformation theory is not

physically sound because it cannot account for history effects in the

mechanical response of dissipative materials. Thus, preference is given to

the flow theory, which is still useful in some problems C21,22]. Based on

the classical theory, a number of researchers proposed different

constitutive relations for large plastic deformation problems. They include

Hill [23,24], Rice [25,26], Mandel [27,28], Lee C29,30], and Green and

Naghdi [31]. However, the existing results in the literature showed

anomalous solutions to analysis of necking and localization in metal and

peculiar results for predic ion of oscillatory shear stress due to a

monotonically increasing simple shear strain C32-35] when the kinematic

hardending rules are used.



In the late 1960s, the formulation of constitutive theories of

viscoelastic materials from concepts of irreversible thermodynamics and

internal state variables reached an advanced level of development C36]. On

the basis Of this success, the theory of plasticity was re-examined along

the lines of Irreversible thermodynamics, since by nature plastic

deformation should be considered as an irreversible thermodynamic process.

In 1971, Valanis C1,2] proposed a new approach, called endochronic theory,

for describing the behavior of viscoplastic material. The theory was

developed on the concept of stress and free energy being a functional of the

entire histories of deformation and temperature based on thermodynamics and

internal variables. Two new concepts were drawn in the development of the

theory, which are (1) the concept of intrinsic time, defined as the ndrm of

the increment of the total strain tensor. It is a scale with respect to

which the memory of a material of its past deformation history can be

measured and (2) the concept of the description of plasticity without a

yield surface. The application of the theory was given by Valanis C2,37]. Wu

and Lin C38) used the theory to obtained the simple wave solution of a thin-

walled tube subject to combined step loading. Valanis and Wu C39] showed

that the theory is able to predict cyclic creep and relaxation of metals. Wu

and Lin £40) illustrated how the strain rate effects could be included In

the theory. Bazant C41], Bazant and Bhat [42], and Bazant and Krizek C43]

modeled the inelastic properties of geological materials including sand,

rocks and concrete using the theory.

The theory was attacked by Sandier [44) on the basis of a conjecture

that the theory might give rise to numerical instabilities in the solution

-5-
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of wave propagation problems and also on its prediction of unloading-

reloading behavior which violates Drucker's postulate of material stability.

To these arguments, Valanis and Read C45] claimed that the instability is

due to the non-uniqueness of the solution of posed problem and not the

fault of the endochronic model. They also claimed that Drucker's postulate

is not of thermodynamic origin and can be violated by the standard

frictional physical systems.

A more serious concern, however, was the openess of the hysteresis

loops. Therefore, the new endochronic theory was developed [45-47]. In new

theory, a new intrinsic time was defined in the plastic strain space, and a

weakly singular kernel function was introduced. It was shown that various

versions of the classical plasticity theory are asymptotic cases of the

endochronic theory. Idealized plasticity models are shown to be constitutive

subsets of the general theory. In particular, the kinematic model, the

Isotropic hardening model, as well as their combinations are derivable from

the general theory. The new theory has been applied to situations involving

unloading and cyclic behavior of materials [45,48]. Lin and Wu [49] applied

the theory to the viscoplastic wave propagation problem of a thin-walled

tube subjected to impact loading. Valanis and Fan [50] analyzed the cyclic

elastic-plastic strain fields in a notched plate. PIndera and Herakovick

[51] applied the theory to model the response of unidirectional composites

under off-axis tensile load.

In 1978, Valanis proposed an extension of endochronic theory that can

apply to problems of large plastic deformation C52]. He developed a

constitutive relation for incompressible materials and used it to analyze a

-6-
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problem af simple shear. Recently Valanis and Wang £53] used the

constitutive relation to analyze the problem of ftinite plastic bending.

Further applications off the theory to a set of special engineering

problems, including closed form solutions, will be presented in this

dissertation.



CHAPTER 2 - ENDOCHRONIC CONSTITUTIVE RELATION OF

INCOMPRESSIBLE PLASTICITY WITH FINITE DEFORMATION

An endochronic constitutive relation applicable to problems of large

plastic deformation was proposed by Valanis [52] very much along the iLnes

of the endochronic constitutive theory of small plastic deformation [1-2,

4 6-47], which is founded on irreversible thermodynamics of internal

variables and the notion of intrinsic time. Irt reference C52], the

endochronic constitutive relation of plasticity was derived for an

incompressible, isotropic, and isothermal material in the spatial frame. In

this chapter the derivation of the constitutive equation for large plastic

deformation is reviewed in the material frame of reference, since In the

next chapter the theory will be used to analyze a set of problems which

involve definite initial configurations.

2.1 Review of the Endochronic Constitutive Equation

Let Rx be a material region with a surface Sx, in an initial unstressed

state. In this state the geometry of R is defined with respect to a fixedx

Cartesian 'material' frame, X2 . The deformed region Ry with a surface Sy is

defined with respect to Cartesian 'spatial' frame, Yi" The deformation of Rx

is defined through the one-to-one mapping Rx Ry such that

ay

Yi" Yi (X -8t )  -(2.1.1)

- 8 -



In the following when quantities are referred to coordinates Xa , their

indices will be the lower case Greek letters; and when they are referred to

coordinates Y1, their indices will be the lower case english letters.

The deformation tensor C 8 and the deformation rate tensor d,, are

defined by

C =  a-i. (2.1.2)CL x CL x

and

d 12 ( av J) . (2.1.3)

where vi is the velocity of a particle.

In their local forms, the fundamental laws of thermodynamics in the

material coordinate frame are:

the first law,

- (po/2p) T'8C - ha, C + (2.1. 4 )

the rate of dissipation inequallty,

ey- (po/p) TC - - 0 , (2.1.5)

and the heat conduction inequality,

, 0 , (2.1.6)

where c denotes the internal energy per unit mass, Ta the contravariant

components of the stress tensor in the material system, T the free energy

density per unit mass, 9 the absolute temperature, h3 the heat flux vector,

the rate of heat supply, Y the irreversible entropy, n the entropy, 0 and

-9 -



p the density of the medium in the undeformed and deformed configurations,

respectively, and the dot denotes the time derivative.

In the internal variable formalism an assumption is made that the

thermodynamic state of a body undergoing an irreversible process can be

specified by the current values of C and e as well as n internal variables

q (not necessarily observable), which could be scalars, vectors or tensors

in the material frame or the spatial frame, depending on the transformation

laws that they are assigned to satisfy. Thus the free energy I is set to be

a function of CW, e, and qr" Inequality (2.1.5) then becomes,

GY -[(/2p) T'- L - ( I n)6 - . . (2.1.7)aC8  as 38ea

Since C a$, qr , and e are independent of each other, the following

relations must hold to preserve the dissipation inequality for an arbitrary

process:

aB 3--T, 2 (2.1.8)
P, acaB

J- B- ' (2.1.9)

qr _r 2 0 (2.1.10)

For incompressible materials ( 1C 8t-1 ), eq.(2.1.8) becomes

T 2 -- P C (2.1.11)ac a

where P is an arbitrary hydrostatic pressure.

- 10-



The reduced dissipation inequality (2.1.10) admits the internal

constitutive equation:

- b r (no sum on r) , (2.1.12)
aqr

where b are positive definite fourth order tensors.

-r

The unique feature of the endochronic theory (see Valanis C45-47]) is

in the definition an intrinsic time scale as the distance in plastic strain

space between two plastic deformation events, and the stipulation that the

stress be a function of the history of plastic deformation, measured with

respect to the intrinsic time scale. In the case of large plastic

deformation of metals one can afford to ignore the contribution of the

elastic deformation, which is small, and thus define the Intrinsic time in

terms of the total deformation. Where plastic fluids are concerned, e.g.,

metals whose deformation is so large that they have lost cognizance of their

original configuration C52]. r.,e then defines the rate of change of the

intrinsic time in terms of the total deformation rate tensor dij. More

specifically,

de)

dt ijkliikl (2.1.13)

where P jkl should be an isotropic non-dimensional function of d j for a

rate independent material.

The simplest form of PiJkl is a constant tensor

Pijkl - P , 6 lj'kl * P2 6ik Jl , (2.1.14)

where p, and P 2 are positive non-dimensional constants. Eq.(2.1.13) in

conjunction with eq.(2.1.14) yields the result:

- 11 -



(pd d Pdid. (2.1.15)
dt i ijij

When incompressibility applies, dii vanishes and

( )2 - p,d d (2.1.16)

dt ij ij

An intrinsic time scale z is defined to account for the hardening or

softening character of a material,

z - d (2.1.17)

where f(;) is a positive function of C. If no hardening (or softening) takes

place f()-1.

In the present form of the theory (see Ref.[52]). the free energy

density is specified as a quadratic function of qr according to eq.(2.1.18):

7 It + Ar qr 1/ 2 C(r)q r , (2.1.18)ii I
ii,N where o , Ar, and C (r) are constants and qr4 are the components of qr in

the spatial frame.

The implication of eq.(2.1.18) is that in the spatial frame the free

energy density does not depend explicitly on the deformation, a property

that one associates with a "plastic fluid", i.e., a material that is so

deformed that its structure in the reference configuration plays no role in

the determination of the Cauchy stress. Note that the form of T in

eq.(2.1.18) satisfies material objectivity and material isotropy in the

reference state.

- 12 -



Eq.(2.1.18) is now expressed in terms of the covariant components of q

in the material frame and it is these that will play the role of independent

variables in the thermodynamic formulation. Thus

.r r _as (r)'r r _aY_06
T To + q as + 1/2 CrqrL qr c c (2.1.19)

r Yi *YJ r

where q ay " ay q r (2.1.19a)

Note that contravariant and mixed components of q r in the material system

can be defined by the relations

a ) " L a x ( r ) ( 2 .1 .1 9 b )

a~~ axOaY ()(219)aax J (r)

q(r)8 = i aXB  (r) (2.1.19d)

qiJT- (2.1.19d)

a ax a j i

The internal constitutive equation (2.1.12) is now written in the

specific form

bCr) "(r) q - 0 (2.1.20)

(r)

where b(r)are scalars and the roof denotes the derivative with respect to z.

It implies that the endochronic rate of change of the covariant components

of g(r) should be proportional to the covariant components of the internal

- 13-



Cr)
stress tensor in which case b is of the form:

q(r)

b(r) =b (2.1.20a)aS 6Y 886

The solution of eq.(2.1.20) in conjunction with the form of T Ln

eq.(2.1.19) and the initial condition on qas (q a °" 6 as), dictated by the

fact that the Cauchy stress in the reference state can be at most a

hydrostatic pressure, is given by

(r) A(r) A(r) aCz-z'rCr) -A A Z e- rC z) dz' C2.1.21)

as "' C (r) 0 a

where ar C
b(r)
b

On the other hand eq.(2.1.11) in conjunction with eq.(2.1.19) gives
Tas= _pCB (r) a$ + (r) qr)B'

T --PC-2(A q(r) + C q~r), ) (2.1.22)

or

T - C- 2(A (r) (r) c(r) (r) Cr)8' (2.1.23)Tas as C- qas, ) 2..3

Substitution of eq.(2.1.21) into eq.(2.1.23) gives the following

relation for the covariant components of the stress

dC
T - -P Ca+ fZG(Z-Z ' ) " dz' -O$ a dz'

UdC dC (

It was found from an analysis of the problems of simple extension and

simple shearing that the contribution to the stress of the second integral

relative to that of the first integral is of the order of 1/a2 where a is of

-14-



the order of one hundred, this being the ratio of the elastic modulus to the

maximum stress (in tension or in shear). In the subsequent analysis the

double integral was ignored with the result that the covariant components of

stress in the material frame of reference are given in terms of a linear

history integral of the right Cauchy-Green tensor C . Thus

T a -P C +"Z G(z-z') Caz') dz' , (2.1.25)

where

A( r) Z
G(z) - 2 1 7 e-at (2.1.25a)

For an extensive discussion see Ref.C52].

2.2 Description of Constitutive Equation in Curvilinear Systems

In order to describe the deformation in a curvilinear system, we set 0

and e to be -'.vilinear coordinates for the material system X3 and the

spatial system Y, , respectively, as shown in Fig.l.

For the material system, we have the relation,

S*8 .a(Xa) . (2.2.1)

The corresponding covariant and contravariant metric tensors G and Ga are

given by eq. (2.2.2):

.Xk aXk (2.2.2a)

and

GaB- (1/fG() (cofactor of G a) (2.2.2b)
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where JG( i3 the determinant of GB.

The corresponding relations for the spatial frame are

e- 1 (Y1) , (2.2.3)

3" I_ 3e1  (2.2.4a)

and

g 9l (1/gl) (cofactor of gkl) 
(2.2.4b)

The deformation map (2.1.1) can be then written through eq.(2.2.1) and

(2.2.3) in terms of one of the following alternatives, depending on the

problem at hand:

Y i Y(e t )  (2.2.5)

e j ej (Xet) (2.2.6)

and

aj- ej (4,t) (2.2.7)

The Cauchy-Green deformation tensor C and its curvilinear counterpart

C are given below:

-- ae.kae1 (2.2.8)
aB klax axB

or in matrix form

CC] - [FIT [gT C F] , (2.2.8a)

where the deformation gradient matrix CF] is given by eq.(2.2.9).
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aek

F - (2.2.9)Fka aX a

also,

. ~ ae l e
CUV = gk1 (2.2.10)

or

Cc] - C]T Cg] CF] (2.2.1Oa)

where

- e (2.2.11)

We now prove the following relations, as these will be of interest in

what follows:

(1) The incompressibility condition is given by

Icv) - IG.kl (2.2.12)

Proof: From the tensor transformation,

-axa 
ax 8

C C(2.2.13)

Then

)a,, I (L)TI- c BI' Ih' H'h (2.2.14)

where IC s I - 1 is unity

and

Ihl - I X 1 (2.2.15)

The proof is completid by noting eq.(2.2.2a).
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(2) The deformation-rate tensor dj is also given by

d - 1/2 -L C . (2.2.16)

Proof: The rate of change of Co0 is

.v i y 3Y i v. v 3v ) ayj ay
7B XB +X ;X X6 3Y, ax m 

C
-

2--lj a (2.2.17)S2dij ax aax B

from which eq.(2.2.16) follows easily.

(3) The intrinsic time scale can be obtained by means of the following

relation, derived by direct substitution of (2.2.16) into eq.(2.1.16).

d( )2 _ (P 2 C- 1  C C 1  )/4 (2.2.18)
dt Ya as an~ ny

or

d4 )2 _ (p2tr([D]))/4 (2.2.19)

where

[D] - CC] dCc] CC]-' d[C] (2.2.20)

In the same manner, we also can obtain d from eq.(2.2.12)

dC )2 - (p2 tr([D]))/4 (2.2.21)

where

CD] - CC]- I dCC] CC]- I dEC] (2.2.22)
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The constitutive eq.(2.1.25), upon use of' the tensor transformation,

a T a, a, 8  (2.2.23)
4 Cie ax P ax"

can be described in the curvilinear system as

-z
T- -P C + f G(z-z') C (z') dz' (2.2.24)
UiV ~VV 0 I

or

C]+z
- -P CC] G(z-z') CC(z')] dz' . (2.2.25)
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CHAPTER 3 -CLOSED FORM SOLUTIONS

To illustrate the application of the theory to the domain of finite

plastic deformation, in this chapter the 'theory will be used to analyze a

set of special and yet practical problems. These problems are:

(1) large plastic uniform extension of a cuboid;

(2) large plastic shear flow in a circular tube;

(3) large plastic torsion of a circular bar;

(4) large plastic bending of a block;

(5) large plastic expansion of a sphere.

Closed form solutions for all problems are obtained. To our knowledge,

this is the first time in the field that this set of problem are solved in

Closed form solutions. In the course of obtaining the solutions the semi-

inverse method is used. The deformation field Is derived from the condition

of incompressibility to within a set of unknown parameters, which are then

determined by satisfying the equilibrium and boundary conditions.I

In order to find the complete solutions for these, problems, we need to

know the kernel function 0(z) in the constitutive equations (2.1.25),

(2.2.24), and (2.2.25). In the development of the endochronic theory of

plasticity in the region of infinitesimal deformation, the kernel function

was discussed thoroughly. There, G(z) was required to be weakly singular at

z
the origin but integrable in the domain O~z~a, i.e., G(0)-- and fG(z)dz(-.

This requirement leads to the following consequences: (1) it gives rise to

closed hysteresis loops, (2) it ensures initially elastic unloading, i.e.,

initially zero rate of dissipation upon unloading, but (3) it implies an
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infinitesimally small elastic domain. Two explicit algebraic forms were

discussed at great length iRn C453. They are

(i) G(z) - r Ge-rz (3.1)

where 0<w<1, p0 >O, Gr >0, and a rO for all r, and

(ii) G(z) - r Gre-arz  (3.2)

with the conditions that G and a be positive for all r,r

G -- ,(3.3a)
r

and

G I, a < =(3.3a)
1

The determination of the material functions is very important in order

that the plasticity theory can be developed and applied. It is a task

involving a considerable amount of experimental investigation and

theoretical analysis. This is not a object of the present dissertation. In a

recent work C54], the kernel function was determined by a strain controlled

cyclic test. The kernel function G(z) was given by the slope of the cyclic

plastic strain-stress curve for the shear test at a steady state. The

hardening function f(C) of eq.(2.1.17) was determined from reversals of the

cyclic shear test. Fan [55) determined by an approximate method the material

functions which were convenient for engineering application.
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In this work, to demonstrate the application of the theory, eq.(3.1) or

eq.(3. 2 ) are not applied to a specific material in detail. Instead, just for

a convenience of calculation, an approximate form

G(z)-G~e- Mz  (3.4)

will be taken in problems of uniform extension, bending, and expansion,

while

G(z)-po/zW (3.5)

in the problems of shear flow and torsion. These kernel functions represent

simple and yet realistic cases r52,53]. For numerical calculation, a will be

set to 200 (this number is characteristic of pure aluminum with a tensile

modulus of 107 lb/in 2 and an ultimate stress of 50x10 31b/In 2 , a being their

ratio.) and w to 0.86 (from C48] for normalized mild steel).

3.1. Large Uniform Plastic Extension

Uniform extension of a unit cube is considered. Taking Cartesian

coordinates x and y (which parallel the sides of the undeformed and

deformed bodies) as the material and the spatial coordinates, respectively,

the deformation field can be expressed by the following relations:

Y' W(t)x1, y' - X,(t)X 2 , y, - X,(t)xl (3.1.1)

where X,, X,,, and X, are the stretches in the x1, x2, and x3 directions

respectively, X >1 corresponding to extension and O< A< to compression.
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For a particular case of simple extension under a force parallel to the x1

direction of the cube, as shown in Fig.2, we have X,>1 and O<A,-A,<l.

The Cauchy-Green deformation tensor is

)L2 0 0

C]- 0 2  0 (3.1.2)

0 0 x2

For incompressible material IdC- 12 X* - 1, i.e. X.- (1/A,) / . Hence the

deformation for an incompressible cube becomes

y1- ix' ,y - (1/A) I/ 2 x 2 ,- (I1/)2x (3.1.3)

The Cauchy-Green deformation tensor now becomes

x2 0 0

C] - 0 1/x, 0 (3.1.4)

0 0 1/1,

Then the inverse and the increment of Cauchy-Green tensor are given by.

1/A2 0 0

c]-
' - 0 1, 0 (3.1.5)

0 0 A,

and
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2A ,dA1  0 0

diC] - -T d),, 0 (3.1.6)

0 0 _X2 dl,

With direct substitution of eq.(3.1.5) and eq.(3.1.6) into eq.(2.2.20), the

intrinsic time is obtained as

(dC) 2- 3P2/2 (di,/X,)
2  

. (3.1.7)

Setting p2 equal to 2/3 (the actual value of P2 is immaterial for all

problems in this paper), (d )2 . (dX,/l )2 . For monotonic extension,

d;-dl,/Xl . Upon integration, ;-ln(l,)+c, where c is an arbitrary constant.

The condition ;-0 for 11-1 requires that c-0 and ;-ln(X,). Neglecting

hardening (or softening) effects in the material, f(;)-l and dz and z are

obtained as shown in eq.(3.1.8).

dz-dl,/A, , z-ln(x,) . (3.1.8)

With the help of eq.(3.1.8) [C] is given below,

22 0 0

] - o _ -1 (3.1.9)

cc] - 0 0 319

-1
0 0 -XT

Setting G-Goe , the stresses are obtained upon use of the constitutive

equation (2.1.25) as follows,
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2G2

2 2-p (1 2 1 /(3.1.Oa)

G0
2. T, . I/A C-P - (I - 1/xI)J (3.1.1Ob)

and

T 1 2 "T 2 3  1 , 0 (3.10.0c)

The components of the stresses in spatial coordinates are given by

T11 - - 2 (1 - 1/AM 2
"(a 2)(3 11a

T2 2- T3 3 - -P •( I-l) (1 -1/1 ) (3.1.11b)

and

T11, T23 " T13 " 0 (3.1.11c)

In the absence of body forces, equilibrium in the deformed body with the

stresses in eq.(3.1.11) gives ap/3yI- aP/3y2 - ap/ay 3 - 0 , i.e., P is a

constant. This constant is determined by satisfvir, the boundary conditions.

In the present case, T.2 and T., are zero at the edges in Y 2 and y3

directions. Hence,

00

P - - (1 - 1/A1  (3.1.12)

Substituting eq.(3.1.12) into eq.(3.I.11), the only no-vanishing stress T,,

(normalized by G,) is given below,

2 (11 a-1TI/Go - ct2 . + = 1- - 0I-I A - - 1/11 - )  P(3.1-13)

while the resultant force in y1 direction is given by

F/,-T,23a (/l 2 odx3
FIG0 - T1 ,A2 /Go ( 4 . 2 )( _)(/Al) (I/Al )- (/ 1 ) . (3.1.14)

- 26 -



I V MW ?MOWN-

When X, becomes very large , T1 approaches a constant given by

3GT,, = (a 2) (c_-) "(3 1.12)

However, since the cross sectional area of the cuboid decreases with X,, the

resultant force will decrease after a critical value of 11 and will go to

zero as X, goes to infinity. The variation of T11 and F with X, are shown in

-- Fig.3 and 4.

3.2. Large plastic flow in a circular tube (pipe flow)

Consider a case of pipe flow in which each point in the material moves

parallel to the axis of the pipe through a distance f(r) depending only upon

the radial position of the point.

Taking the cylindrical polar coordinates tl(R,e,Z) in the undeformed

body and j(r,B,w) in the deformed body, the deformation field is expressed

as follows:

r-R, e-e. w-K(t)f(r)+Z . (3.2.1)

where K is a positive function and the deformation corresponding to positive

stresses is shown in Fig.5.

The metric tensor in the material system is

1 0 0

CCCe - 0 R' 0 IG aaI-R 2  (3.2.2)

00 1
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and in spatial system

10 0

1gkl- 0 rz 0 1gkl -r' (3.2.3)

0 0 1

The deformation gradient is

1 0 0

CF]- 0 1 0 (3.2.4)

-Kf' 0 1

where f'-df/dr. The Cauchy-Green deformation tensor, derived by use of

eq.(2.2.10a), is

1+K2f'2 0 -Kf'

Ca ]- 0 r 2  0 l -r 2 • (3.2.5)

-Kf' 0 1

The incompressibility condition is satisfied automatically since

1C1vI"IGklI* The inverse and the increment of CC V are

1 0 Kf

Ca ]I - 0 1/r2  0 (3.2.6)

Kf, 0 1.K2f'2

and

2Kf'2dK 0 -f'dK

d[C - 0 0 (3.2.7)Iuv

-f'dK 0 0
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The intrinsic time can be found from eq.(2.2.22) to be

(d;.)2-  (f' dK) 2  ,(3.2.8)

, where P2 has been set to 2. For monotonic shearing, d;-f'dK. After an

integration and imposition of the initial condition, u=0, at K-0, it follows

- * that C-f'K. Upon neglecting the effect of hardening (or softening) of the

1h material, dz and z are

dz-f'dK and z-f'K . (3.2.9)

Now The Cauchy-Green deformation tensor is rewritten with the help of

eq.(3.2.9) in the form

1+z2  0 -z

a U] - 0 rz 0 (3.2.10))

-Z 0 1

and dEC]/dz is obtained in the form

2z 0 -1

d[CJ/dz - 0 0 0 (3.2.11)

-1 0 0

Setting G(z) - p,/z , the stresses are obtained by use of the constitutive

equation (2.2.25) in the form

T RR'P(I+z1) 2Po/(I-a)/(2-(%) z ( - )  (3.2.12a)

TRz-P /(I-a) z (3.2.12b)

and

T'ee =' Pr ' z" p  T Re' T ez" 0 . (3.2.12c)
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rThe components of stress in the spatial curvilinear system T are given by
- z(2-ti) e-pr
T• y*- -P-2p/(2- z) B T -- P ( .: . Tr ' ' ww '(3.2.13)

T n-p./(1-40) z and T To 0;. rw Tre= e

while the physical components of stress In the spatial system are given by

-

a rr"-Pg 1  , a - P

a -g 2  and a 0 (3.2.14)rw re ow

where

gl- -2po/(2- z2-) -2po/(2-) (f'K) (2-) (3.2.14a)

and

g2= -Pol(1-a) z ( 1-4a ). _p,/l( 1 _c) (f IK ) 
( 1- a )  (3.2.14b)

In the absence of body forces the equations of equilibrium along with the

stresses of eqs.(3.2. 1 4) give the relations,

-aP/ar + 3g,/3r + g,/r = 0 , (3.2.15a)

-aPgw + 3g./lr + g,/r - 0 (3.2.15b)

and

-aP/-8 = o (3.2.15c)

The last equation requires that P be a function nf r and w only. Since g,

depends on r only, equation (3.2.15a) requires a2P/ar~w-O. Thus,

P - Cow + Y(r) , (3.2.16)

where C. is a constant of integration. From equation (3.2.15b),

g, -C,/r + Cor/2 , (3.2.17)
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where C, is another constant of integration. To ensure a finite solution at

r-O , C, must be zero in eq.(3.2.17),

g2-Cor/2 . (3.2.18)

Recalling the expression of g. in eq.(3.2.14a), it follows that

Cor/2 -_-p,/(1-=) Z (1- •(3.2.19)

Solving for z from eq.(3.2.19), one obtains

. ]1/0- 1-r/01-a)
z - E-C.(1-C)/2po] • (3.2.20)

Introducing z into g, in (3.2.14a) and then substituting g, and P in

eq.(3.2.16) into the first equation of (3.2.15),

3P aY--- P 2PO 1- I I  r( 2 -a)/(1'-). (3.2.21)

After integration of eq.(3.2.21), the pressure P is obtained as

C~w D -2Po(3-2a) -C,(1-a)]1(2_m)/( 1_)r (4-_3a 1/k 1_-( )

(2PC) D [- , (3.2.22)

where D Ls a constant of integration. The constants C, and D are determined

by imposing the boundary conditions.

A case of pipe flow with the following boundary conditions is now

considered:

(I) at w-O, -F - fa2rrww aj dr

(ii) at w-lt 0- 2wr ww-dr (3.2.23)

and

(III) at r-a f(a)-O

- 31 -



Uponl satisfying the boundary conditions (1) and (ii) in eq. (3.2.23) the

f~ ollowing equations are obtained:

-F --Dva" I }(-)/1a a

(2-a)2 (4-3a) PC(3.2.241)

S and

4p.0 -2a)(l-az) -C0 (l-m)
Om-Dira2-CLval { p -c~

(2-z) 1I (4-3a)

Solving the simultaneous equations (3.2.241), The constants C. and D are

obtained as

Co - -F/ (Lira2)

and (3.2.25)

D -/(w 2) 49 0 -2a)(1-ax) I-C0(1-a) 2-) 'ar(cLI-)

D /ia)*(2- a)2 (4-3a) 
2p,

Finally, the following non-vanishing stresses are obtained and are given by

eq. (3.2.26)

a rw/p,--B~rL)/2(3.2.26a)

0 wwPO-(Fe/pa O~wL-1-2(-42)/(2a)'~l-L)/-81(2-a)/C 1-a).

-[2(-m)(4-a)(c/L)(2-)/(-_(r/L) 2a/I))

and (3.2.26b)

a /Pa 0 /a-2/2-m)C1-c02-01(2-Mx)I1(z) rL(2a/1)

where (3.2.26c)

B-F/(wrp~a2) .(3.2.26)
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The displacement in the w direction, u,- w-Z - -Kf(r), can be obtained

4by an integration of the expression z-Kf'(r) In eq.(3.2.20) and is given by

Kf=C(1-a)/(2L2apj(1- 1)/(2-)]r - /  ) c, . (3.2.27)

Imposing the boundary condition (Iii) in eq.(3.2.23) gives the integration

constant C3,

c,"- = /-) (3.2.28)

" Hence the displacement u,, normalized by a, the radius of pipe, becomes

4 .: u,/a - - (2-) [(1-)/ 2 "B]/Cl){(r/a)(r/L) -(a/L)

(3.2.29)

It Is noticed that u, reaches a maximum value at r-O, which is

u,(O)/a (I-=) [a(ia)/2LJ ]/(-,) /0-00 (3.2.30)

(2-=)

The above solutions can be used to analyze the process of metal

extrusion in a cylindrical die. The condition to move a bar of length L and

radius a is given by arw= (a rw) at r-a. (a rw)c is the factor representing

the surface condition between the metal and the die. When F increases until

Fc , arw reaches the critical value (a rw) at r-a, The metal bar starts to

move in the die with the shape of u, corresponding to F a

F,=  a(arw)c (3.2.31a)

u,/a - (- ) a/ (r-a) r/k) (k) / I-(2-a) c(-)2S][rl)rb (/

where (3.2.31b)

Bc - F ac/(wpoa 2 )
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With a- 0.86 a numerical example is given as follows. Fig.6 shows the

deformation profile for various parameter 8. Fig.7 gives the relation

between deformation u, and the parameter a , i.e., the applied force, at

i-O. Orw is a linear distribution over the cross section of the pipe, arwMO

at r-O and arw" a/2L at r-a. The distribution of aww and orr over the cross

sections w-0, and w/L-0.5, are given in Fig.8 for the case of a/L-0.2, and

O=70.

3.3. Large plastic torsion of circular bar

Consider a uniform solid circular bar of radius a. The one end of the

* bar is fixed. The other end is subjected to an angle of twist due to applied

'i: torque T. The bar is also assumed to be constrained axially, thus allowing

77 the possible development of an axial force F. The deformation field is the

. following:

r-R

e-e+k(t)Z (3.3.1)

and w-Z

where tR,e,Z) and (r,8,w) are the cylindrical coordinates for the material

and spatial system, respectively. Eq.(3.3.1) implies that the planes

perpendicular to the axis of the bar are rotated in their own planes throug

an angle proportional to the distance of the plane from the fixed end, k is

the twist per unit length.

The metric tensor in the material system is

1 0 0

CG as 0 R2 0 IG 8 I.R2  (3.3.2)

0 0 1
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and in spatial system

1 0 0

Cgkl- 0 r2 0, gkl -r+  (3.3.3))

0 0 1

The deformation gradient is given below,

1 0 0

IF]- 0 1 k (3.3.4)

0 0 1

The Cauchy-Green deformation tensor can be derived by use of eq.(2.2.1Oa),

1 0 0

Ca W] 0 r' r2k ,ImIr 2 (3.3-5)

L 0 r 21 r 2k' 1

The incompressibility is again satisfied since IC I1i klji The Inverse and

the increment of CC ] are given by

r2  0 0

L V1 - 1/r2  0 r2k2 1 -r2k (3.3.6)

0 -r2k r 2

and

0 0 0

dEC ) -r 2dk 0 0 1 (3.3,7)

0 1 2k
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The intrinsic time can be obtained as

(dC) 2"  (rk )2  (3.3.8)

where P2 has been set to 2. Under the condition of monotonic torsion,

dC-rdk. After integration and consideration of a zero strain initial

condition, C-rk. Neglecting hardening and softening effects, dz and z are

given below,

dz-rdk, z-rk . (3.3.9)

Hence, the Cauchy-Green deformatlon tensor can be written as

1 0 0

[C ] 0 r2  rz (3.3.10)

0 rz z'+1

Then,

0 0 0

[C 0 0 r(3.3.11)
M.V

0 r 2z

Again taking G~z) - p ,/z the following stresses are obtained after

substitution of eq.(3.3:10) and eq.(3.3.11) into eq.(2.2.25) and then

integrating the resultant equations,

- 36 -



T RR -' ee" -Pr TR RZ 0

i~l-2p, z(2-a)

T ZZ -P(z z+ 1)+ (I-a)(2-a) ( (3.3.12)

and TeZ -Prz+[p./(1-sc)]'r-z(1-)

The stresses In the spatial curvilinear system T can be obtained by tensor

transformation as follows:

T -P T- T Pr T --P-C2p/(2-a)]z ( 2 - a

Tw- =po/(1-a)].r-z and Tr " T w- 0 (3.3.13)Ow r

The physical components of the stresses in the spatial system are

~(2-a)
arr- ao8B -P , Oww --- 2pa/(2-a) ] z ,

Oew - [po/(-a)] z(1-a) and are= arw- 0 (3.3.14)

When body forces are zero, the equilibrium equations with the stresses in

eq.(3.3.1) give ap/ar-0, ap/ae-0, and Dp/3z-0. This states that P is a

constant. If the surface of the cylinder r-a is to be free of tractions,

arr-O there. Hence P must be equal to zero. Consequently, the following non-

vanishing streSses yield

( " [P./(1-a)](rk)(1-) (3.3.15a)

(W" [-2p/(2-=) ](rk)(2 - a) (3.3.15b)

Clearly there is no any integration constant available, the forces at the

ends can no longer be controlled for the prescribed deformation field. The

resultant force F which is needed to maintain the length of the bar during

the deformation can be calculated as
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41 (a (2-a) (..6

i F/(pea 2) - (1a a 12wrdr)/(poal) - (ka) (3.3.16)

± while the resultant torque as

- (fa 21 ( -()
T/(pa') 2wa r'dr)/Cpa - (1) (ka) (3.3.17).. o (t-cL) (4-cl)"

Solving for k from (3.3.17), the twist per unit length is obtained and given

by eq. (3.3.18),

k - 1/a [T/(poa') (1-)( 4-)1/(-a) (3.3.18)~2ilr

The total twist angle at any station w can be obtained as

A8 - 8-e - kz - (w/a)[T/(poa') (1-a)(4-a),]/(1-() (3.3.19)

The numerical results with a-0.86 are given in FLg.10 - Fig.13. Fig.10 and

Fig.11 show the variations of the torque and axial force vs. the twist,

respectively. The distributions of aw. and aww over the cross section are

given in Fig.12 and FLg.13. It is interestLng to observe that for relative

small k (k1) the torque increases more rapidly than the axial force,

however for relative large k (k>1) the axial force increases much faster

than the torque. For the elastic case when a-O, in eq.(3.3.17) and

eq. (3.3.16)

T - (wp.a'/2)k , F - (rpa'/2)k 2  (3.3.20)

For infinitesimal deformation, k<<1, F vanishes. The results agree with

those from the theory of elementary mechanics of materials.
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3.4. Large Plastic Bending of a Block

Let a block, bounded by the planes X!- a1, Xi- a2 ; and X
2- ±b; X = ±C

in the undeformed state, be deformed symmnetrically with respect to XI axis

into a portion of a cylinder as shown in FIg.14. Letting %j(r,8,w) be

coordinates in deformed state, the deformation map can be stipulated by

r - r(X',t)

e - e(X2,t) (3.4.1)

and w - w(X',t)

It will be shown presently that the condition of incompressibility restricts

the deformation given by eq.(3.4.1) to a form where a plane of constant X,

deforms to a surface of constant r; a plane of constant X2 to a plane of

constant 8; and a plane of constant X3 to a plane of constant w.

The metric tensors in the spatial system are

1 00 1 0 0

Egkl] - 0 r2 0 and g kl 1 0 I/r2 0 (3.4.2)

0 0 1 0 0 1

The deformation gradient matrix is

dr/dX/ 0 0

I r 0 d/dX2 0

0 0 dw/dX3
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Hence the Cauchy-Green tensor is

(dr/dX')z 0 0

E[c] 0 r2(de/dX 2)2  0 (3.4.3)

0 0 (dw/dX3 )2

- The incompressibility requires that

(r dr/dX1 )(de/dx 2)(dw/dXs) - 1 (3..4)

Since r depends on X1 and t only; 8 on X1 and t; and w on X3 and t, the

following must be true at all times,
r dr/dX' - c,(t), d8/dX 2  c2 (t), dwldX3 = c,(t)

and c(t) c2(t) Co(t) - 1 (3.4.5)

Integation of eq.s(3.4.5) give the following deformation field,

r2/2 a c,X1 + A1 (t)

8 - c2X2 + A2 (t) (3.4.6)

and w - cX' + A,(t)

where A,, A2 , and A. are the constants of the integrals.

Considering the plane strain condition (c,=-, A,-O) and excluding rigid

body rotation (A2-O), the deformation field becomes

ra/2 - R X'+ A(t)

8 - (I/R) X2 (3.4.7)

and w . X'
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where the facts that c2 Is the curvature and c the radius of curvature of

L. the deformed cylinder have been used. The Cauchy-Green tensor and its

inverse now become

1/Q2  0 0 Q 2  0 0

-1
C] - 0 Q2 0 and [C] - 0 1/Q2 0 (3.4.8)

0 0 1 0 0 1

where Q - r/R. The increment of C] is

-2Q- 3 dQ 0 0

dEC] - 0 2QdQ 0 (3.4.9)

0 0 0

The intrinsic time can be obtained from eq.(2.2.15) and eq.(2.2.16) whereby

(d ) -) (1/Q)dQ]2  , (3.4.10)

where p2 in eq.(2.2.15) has been set equal to 1/2.

For monotonic bending dc - (I/Q)dQ and then l - in(Q) c after integration.

Since C-0, for Q-1, hence c-0. Neglecting hardening or softening effects,

f-1 and dz and z can be derived as shown in eq.(3.4.11),

dz - (1/Q)dQ , z - ln(Q) . (3.4.11)

With the help of (3.4.11) C Is given below:

-2Q- 3  0 0

CC] - Q 0 2Q 0 (3.4.12)

0 0 0
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Takinlg G(z) -G~e ,the stresses are obtained, upon use of the

-~constitutive eq.(2.1.25), (a+2

T21-Q2Cp+(G,/(L-2)(11/Q(3.4.13)

Tj,- -P, and T1 2 .m T23"" T13in0

The components of stress In the spatial curvilinear system are given by

eq.(3.4.14),

(m- 2)
T 1 - P -(2G/(/-2))(1-1/Q)

Tem r2C-P+(2G,/(m+2))(1-1/Q(=+2))) , (3.4.14)

TWM -P, and T T r- T w -O

while the physical components of stress in the spatial system are given by

eq. (3.4.15),

Trr = -P-(2GOI(a-2)(-/Q a - )  ,

a ee 0 -P(2G/(c)+2)C ' 1/Q (c+ 2)) (3.4.15)

TWM -P and a rea rw we 0oWw- and O owr = ew=

where P will be determined from the equilibrium equations and the boundary

conditions.

When body forces are absent, two of the three equations of equilibrium,

in the 0 and w directions, are satisfied identically if the stresses in

(3.4.15) are functions of r only. The remaining equilibrium condition is

given by eq.(3.4.16):
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7 (a rr + r 0 (3.4.16)

Substituting the expressions for the stresses in eq.(3.4.15) into

eq.(3. 4 .16) and integrating, the following relation for P is obtained,

p 2G {(/ (-2) } +2G. 1-2x/( -4)ln(r/c)-1/(a-2)2(R/r)(a 2 )

a-2

-1/(a+2)'(R/r) (a + 2 ) , (3.4.17)

where c is the constant of integration.

Normalized by 2G., the non-vanishing stresses in (3.4.15) with the help of

eq.(3.4.17) become

arr/2G,- 2a/(a 2-4)ln(r/c)+1/(a42) 2(R/r) ( 12)+l/(a.2) 2 (R/r) ( + 2 ), (3.4.18a)

a e/2G, 2 (a2 -4) [ 1 +in (rlc) I- (a- 3) / (cc- 2) 2 (R/r) (m- 2 )  (3.4.18b)

(a+1 /(cL+ 2 )2 (R/r)(a2

aY /2G.- 1/(a-2)+2a/(az-4)ln(r/c)-(a3(a a-2)(R/r)(a-2 ) (3.4.18c)

+ 1 / (c+2) 2 (R/r) ( a 2

where the constant c will be determined from the boundary conditions.

Suppose that the undeformed surfaces of the block a,-O, a 2 -H, b-L/2,

and c-1/2 in Fig.2 map into the deformed surfaces r-r,, r-r 2 , and e-e. The

following geometrical restrictions must hold:

(a) R-(r2-rI)/(2i);

(b) e0 -L/2R and in the case in which

the beam is bent as a circle, R/H-L/(2Hw). (3.4.19)
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(c) A-(r 2_r2) /4RH

The boundary conditions appropriate to the bending of the block are the

following:

(1) rr- f, at r-r,; arr f. at r-r2

(2) the resultant moment and the resultant force acting on the surface

initially at X1 - ±b/2, are
L ~ r2

M l r eerdr (3.4.20a)

-r 2  r

F I f a d l fr d(ra rr) - r2f.-r,f, (3.4.20b)

Upon satisfying the boundary conditions stipulated in eq.'s(3. 4.2Oa,b) we

obtain the following five equations relating the six variables r,, r2 , c, R,

M, and F.

( -2) + (a 2)

2a/(a2 -4)ln(n 1/d).1/(m-2)* (n/r2) +1/(a 2) 2 (n/n%) .2)

r-2a/(a2-4)[(n,2/2)ln(n2/d)-(nl2/2)ln(ni/d) +(n2 -1)/4]

+ (m,-3)/ (or,-2)'/ (m- 41(n/ n.)( - 2'- (n/n,)( -2n, (3.41.21)

(cL I)/(cL 2)2/ct [(n/na)( 2n -  (n/n,)(+2nl

S - n2g 2- n1g,

n- (a -n r )/2
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A~ii

ihere

'- r,/H , ia" r,/H , n - R/H , T - M/(2GOH 2 ), d - c/H

S F/(2GOH) , g,- f,/(2G,), and g2 - f2 /(2G,) (3.4.22)

The problem of interest here is the one in which the radial boundary

stresses f, and f 2 are equal to zero. The solution then reduces to assigning

a value to R, the radius of curvature of the neutral axis. Eq.'S(3.4.21)

then determines the deformed radii r , and r2, the constant of integration c,

the moment M and the end force F which is zero in this case.

r- Specific cases

case (1): A very thin beam.

As the first example, consider a pure bending of very thin beam. Let

be the distance from the neutral axis. Th-n -- R+ , and E/R<<. Employing

the Taylor expansion,

(a-2)(a+2)
(R/r)a 2  1-(a2)(V/R); (R/r) -- ( +2)(&/R) (3.4.23)

The non-zero stresses (3.4.15) become

a rr = -P-2G,&/R ; a8- P+2GO&/R ; a- -P (3.4.24)

Satisfaction of the equilibrium eq.(3.4.16) gives the pressure as

P - -2G, /R + c (3.4.25)
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introducing (3.4.25) into (3.4.24),

~ rr ~ 4G/R -a , w o 2Go /R -c . (3.4.26)

The boundary condition, arrO , at , gives the integration constant

Sc-O; and the condition of zero resultant force at the ends of -direction

yields &,-e 2 -ft/2 ,where h is the deformed thickness of the beam. Then,

a 4ee , W- 2Go&/R M = Geh'/(3R). (3.4.27)

*. The results here are the same as those in the elastic deformation of pure

i-: bending except the stress in w-direction which is required to produce plane

', strain conditions in the presence of incompressibility. Evidently the

strains in this case are extremely small resulting in an elastic solution.

Case(ii): A thick beam.

Now consider an example of pure bending of a thick beam. In thia case

the zero resultant force F-O and fl-f 2-O. Therefore, g,-g 2 -O. thus,

2a,/(a-4)in(n,/d) I/(a -2)'(n/n,) (a*-2) .1/(a+*2 )2 (/n,) ( d 2 ) . 0

2a/(a 2-4)ln(n 2/d)+I/(a-2)' (n/n) (a-2) 0(2) 0

n - (n' - n' )/2 (3.4.28)

T . 2 /(c'- 4 )[(n2/2)ln(n2 /d)-(n /2)ln(nl/d) (n2-n,)/4]

+ (m,-3)l/(m- 2) 2l/(a- 4)[C( n/ n,)(a2nl- (nln,)(a2n,

((, 1~~)l 2/a [(la(a-2)n ( a-,) :2)n,
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gq.(3.4. 2 8 ) is a set of non-linear equations. The following procedure is

used to get some numerical results for this set of equations.

(1). Eliminate the constant d from the first two equations of (3.4.28) to

get one equation involving unknown n,, n2, and n.

(2). Use the Newton iteration to solve n, and n2 for given n from the

resulting equation from step (1) and the third equation in (3.4.28),

which are,

-(a-2) (a 2)

(a- 2)(a2. 2a/ (L a-4)ln( n2)+ i/ (a-2) ( n/n2 ) +1/ ( a 2)'(Ti/%r2)

n (12 n~i )/2 (3.4.29)

(3). Obtain the constant d for corresponding n, nj, and nj from either one

of the first two equations in (3.4.28).

',. Obtain T from the last equation in (3.4.28) for corresponding n, ni,

n2 , and d.

Before formulating the numerical solution scheme, the existence and the

uniqueness of eq.(3.4.29) is first discussed. Look at the following

function,

f(x)-2a/(a 2-4)lnx+l/(a-2) 2(n/x) (a-2) 1/(a+2) 2 ( n/x) (a2) (3.4.30)

where x may be nj and ha. For given n, when x approaches zero, f(x) goes to

infinity. When x tends to infinity, f(x) goes to infinity. f(x) has one and

only one minimum at x approximately equal to n, since a is a large numberm

ranging from 100 to 200, xm-n is the root of following equation,
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f(x)''[2a/(a1-4)-(n/x m ) (m-2)l/(a-2)+(n/xm) (a*2)l/(a 2)]/x m-0 (3.4.31)

Fig. 1 5 depicts the character of function f(x). It can be seen that for a

value of f(x), there are two roots(except the case in which the minimum is

also the root) corresponding to n, and n 2 . One-one relation I is shown in

Fig.1 6 from the first equation (3.4.29). On the other hand another one-one

relation II is also shown in Fig.16 for positive n, and n2 from the second

-- equation of (3.4.29). The intersect of I and II gives the solution n, and n.

for given n.

The Newton iteration scheme C56] for (3.4.29) can be written as

2 i+1 - n2 i L(02,/ ' aO2/3n2 1  02li (3.4.32)

where *, and 02 are

0, - 2a /( 2 - 4 )ln(n 1/n 2 ).[(n/ri,) (-2-(n/%) (a-2)]/(a-2)1 +

+ [(n/ni) ) (n/ n,)( ]/(a 2)1 (3.4.33)

and *2 - 2n -nl I

Numerical results were obtained after setting a-200. Fig.17 shows the

variation of moment with the curvature. There is a softening effect in the

sense that the moment decreases with increase in curvature after a critical

value of the curvature has been reached. However this is a geometric

Phenomenon since all stresses increase monotonically with curvature. Fig.18

- 48 -



skjows the variation of arr with curvature at the neutral axis while in

Fig.19 and 20 we show aee at r-r, and r-r, . As the curvature increases the

• ., neutral axis moves closer to the compressive surface of' the beam thereby

* requiring a large compressive tangential stress to maintain moment

equilibrium. The material can sustain a large compressive stress by virtue

of its incompressibility. Fig.s 21-23 show the distribution of a over the

cross-section of the the beam for values of R/H of 50, 5, and 1. The stress

U Be is zero at the neutral axis as expected. Fig.s 24-26 show the

distribution of arr over the depth of the beam for values of R/H of 50, 5,

rr
and 1. Observe that rr is about two orders of magnitude smaller than a Be

and reaches maximum value at the neutral axis.

3.5. Symmetrical expansion of a thick spherical shell

Identify the curvilinear coordinate systems @ in undeformed body and

ej in deformed body with the system of the spherical coordinates (R,0,9) and

(r,0,8), respectively. The deformation of the symmetrical expansion of a

thick spherical shell can be described as

r - r(R,t) , * - 0 , e - e (3.5.1)

In the material system metric tensors is

1 0 0

CG 0 R2 0 IGa 8 I-R ' s inlo (3.5.2)

0 0 (Rsino)l
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and in spatial system

1 0 0

Cg IJ- O r 0 Ig ,I-r sin2 (3.5.3)

0 0 (rsin,)l

. The deformation gradient matrix is given below,

r' 0 0

J. [F]- 0 1 0 (3.2.4)

-.- 0 0 1

where r'-dr/dR. The Cauchy-Green deformation tensor is

r' 0 0

0] - 0 r2  0 , I t r'rlsin2  (3.5.5)

0 0 (rsino)
2

For incompressible material,

r'2r4-R4 , i.e., r 2dr-±Rf2dR • (3.5.6)

Positive sign in eq.(3.5.6) is taken for expansion of the sphere. After an

integration, rl- R3+A(t). Therefore, the deformation (3.5.1) becomes

r - CR+A(t) 1/3, , - e . (3.5.7)

Consequently, the Cauchy-Green deformation tensor becomes

R/r" 0 0

C] - 0 r 2  0 CI- r'2r sin 2o (3.5.8)

0 0 (rsino)
2
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Then the inverse of the Cauchy-Green tensor is

r4/R* 0 0

0 11r2  0 (3.5.9)

0 0 1/(rsinI)j

while the increment is

-4(R/r')dr 0 0

-- d[C] - 0 2rdr 0 (3.5.10)

0 0 2rsin2 dr

' The intrinsic time can be obtained by substitution of eq.(3.5.9),

eq.(3.5.10) into eq.(2.2.22) as

(d4 ) 2(drlr)l (3.5.11)

where P2 has been set to 1/6. For monotonic expansion, d;-dr/r. After an

integration, ;-in(kr), where k is a constant of integration. Since ;-0, for

r-R, hence kR-1, i.e., k-I/R. Neglecting the hardening and softening effect,

dz and z are obtained as follows,

dz-dr/r , z-ln(r/R) . (3.5.12)

With the 1,lp of eq.(3.5.12) d[C]/dz is given below,

-4(RI/rl) 0 0

dC]J/dz = 0 2r2  0 (3.5.13)

0 0 2r2in 2
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Taking G-Go e - z , the following stresses are derived by use of the

constitutive equation (2.2.25),

4G. 4
-RR (R/r)"{-P - -,1-(R/r) 

2G,
- r2[-P R- (R/r) 2

N r sin 2o I G0 +1(/)a2 (3.5.14)

TEand Te - T 0e -

The components of stresses in spatial curvilinear system are

2G ° m +2 ]
T 7- r2 -P~(*)£ R/r) J

040- r2sin 2+ + 2G [1-(R/r) } (3.5.15)

+-2)

r 2TZ. siand- 7 +

and T "T T 0

The physical components of the stresses are

Irr - P -3= [1-(R/r) J

P+2G, + 2

-(- -(R/r) ( .5.16)

e" e a n2) C1-(R/r) (3

and Tre-a Te-a r-M 0

For the symetrical expansion, the equilibrium equations In spherical system

with the absence of the body forces are
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-.

(1/r2) i.. (r~rr)- (lr(a+ e)- 0

and Te 88 3(o)aL( 0 (3.5.17)

After substitution of eq.(3.5.16) into (3.5.17), the last equation of

(3.5.17) becomes aP/aS-aP/ao-o. It follows that P-P(r). And the first

equation of (3.5.17) becomes

d- " Gr d " G 3_ __ d 2- (4/r) 2}
,)-(R/r) I- ( 2) (R/r)-4 (2)

(3.5.18)

The integration of (3.5.11) yields the following,

4G, c4
P - ) l-(R/r) -- 4G0Q(R/r) + c (3.5.19)

'- where c is the constant of integration and

i./r { 3a 2 ci- 4 1 a+2 s=2

Q(R/r) R,/r, (a-4)(a+ 2 ) - 2 s 1a+ 2 ) ds , (3.5.19a)

where R, and r, are inner idii of undeformed and deformed sphere,

respectively. With the help of (3.5.19), the following non-vanishing

stresses are obtained,

ar- 4GQ(R/r) - c

4G, 4 2GO-4) -[-(R/r)a]+ I( -(R/r) 1 (3.5.20)
Se 88 rr 07~ a+~2) [

Consider the following boundary conditions In the resent problem,

(i) arr-P, , at r-r,

(ii) ar-Ps , at rir, . (3.5.21)
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upon satisfying the condition (I) in eq.(3.5.21), c--P1 . Applying the

condition (ii),

P2 - P1 - 4G.Q(R 2/rl) • (3.5.22)

From the geometrical condition rs-Rs.a(t),

;M r3- RI - r - 3- rs - R3  , (3.5.23)

where R2 and r2 are the outer radii of the undeformed and deformed sphere

- respectively. After a few steps of simple algebra manipulation, the

z following relation is derived,

R/r 3 K (3.5.24)
CK+-1 /(R,/r

where K-R/R,. Eq.s (3.5.22), (3.5.24), (3.5.20) and (3.5.19a) with the known

P1, P2 , R, and R2 give the complete solution. It can be seen from (3.5.22)

that when Pj-P 2 , Q(R 2/r 2 )-O. Since the integrand of eq.(3.5.19a) Is

monotonic increasing function it follows that R1/r,-R 2/r2. This is true if

only if R,/r 1 - R2 /r2 -1. This is the condition under which no deformation

takes place. This agrees with the incompressibility assumption. Some

numerical solutions with R2/R1 -1.5 and a-200 are given in Fig.28-30. Fig.28

Shows the variation of (P2- PI) with respect to rj/R 1 . The former decreases

after a critical value of r/R. Fig.29 shows the distribution of the a
rr

along r-direction for a case P,/14G-0.0051 and P.-O while Fig.30 shows the

distribution of a e and a 0 along r-direction for the same case.
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In this chapter, the closed form solutions for five special problems

were obtained, in which the prescribed deformation f ield has one

undetermined parameter. But for more complicated problems It can be expected

.~that the numerical solutions are necessary. In next chapter, the numerical

'~method with finite element technique for the boundary value problem will be

f ormulated for both incompressible and compressible plasticity.
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CHAPTER 4I - NDOCHRONIC CONSTITUJTIVE RELATION OF

COMPRESSIBLE PLASTICITY WITH FINITE DEFORMATION

The assumption of plastic incompressibility, which is pivotal in the

development of the classical theory of plasticity, is an approximation and

- .~. simplification to the real situation. For some rubber-like materials this

assumption may be a good approximation, but it is not a universal rule. In

reference [5T] the assumption was evaluated through a series of simple

tension tests on some very important materials such as aluminum, copper and

low carbon steel. The experimental results showed that those materials are

plastically compressible and that the compressibility increases with

straining in the plastic region. Hence developing a theory for compressible

plasticity is very important task. In this chapter, the plastic

complressibility will be introduced into the endochronic constitutive

equation. To do this the free energy density in the thermodynamic

formulation will be first modified. Then the method used for developing the

constitutive relation for incompressible plasticity In the Chapter 2 will be

used to get the constitutive equation in the presence of compressible

Plastic deformation.

i4.1 Development of the Constitutive Equation

In chapter 2 a constant term 'F. in the free energy form was assumed. it

Is noticed that this assumption led to the constitutive equation of
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incompressible plasticity. Now the constant term is replaced by a function

of I,, the third invariant of the Cauchy-Green deformation tensor. Hence,

S the free energy density becomes
A*r) (r) /Cr) Cr) Cr)

F +oI) A q + 1/2C q (4.1.1)

' Along the line of the development of the constitutive relation for the

-- incompressible material, it can be seen that with this modification to the

free energy density the covariant components of in the material frame

remain of the form

(r) A r  A A(r ) z -a(Zz)C(,
qar - A Cr) a (r) 0 e-r zz') dz' , (4.1.2)

c(r)

where a - r 7
rbF

Fo- the constitutive relation now the contravariant components of the

stress, upon use of eq.(2.1.8) in conjunction with eq.(4.1.1), are

Tas- £ 2 r " as (r) as (r) (r)a qr)B'
T o C2, 2(A q r) C q ,q~rB) (4.1.3)

qe Cr) q B

or the covariant components of the stress

T21 7 CaS_ 2(A qaa (r) (r) Cr) (r) (r)B'"B q~C8 2 A q * qB ' q 8 ] "(B

Substitution q.(4.1.2) into eq.(4.1.4) gives the following relation

for the covariant components of the stress

- 76-



Az

T C .2[21 y- Ca+ fZG(z-z' )C )
as PO 0i (X8Z dz

dC dC BV
_C o.LG(2z-zz,) z dzdz2 .] (4.1.5)a dzj dZ2

Once again ignore the small quantity of the double integral in eq.(4.1.5)

and get the constitutive equation as

T C 21-, B 0 hz') dz' 1 (4.1.6)

In the matrix form

z
[T] -. P [21, s Cc] + f0G(z-z,)[C(z,)] dz,} (4.1.6a)

with

A(r) z

G(z) - 2 1 A- e-rz (4.1.6b)
r C r)

When the condition of incompressibility is imposed, IC s1-1, the term

a3Y/al, is indefinite. If the term is set to be -P (the factor 21, is also

absorbed), eq.(2.1.25) is again derived, which is the constitutive relation

for incompressible plasticity,

T . -P C B + fzG(z-Z')C hz') dz' (2.1.25)

For intrinsic time scale, dii is no longer vanishing under a

compressible plastic deformation, thus

( . )2 - pd 1 dj + P2dijdij . (2.1.15)

Eq.(2.1.15), after using eq.(2.2.16), becomes
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dE-1 ( 2-1 -1
d' C p,/4 (C 1 )2+ p 2 /4 C (4.17).: ,a Yea c n n

.. or

dC -I4 C dC 8)2+ p, /4 C- I dC C - dCn (4.1.8)
as a2 =a a/ ( 8 n. nY

In matrix form

'* d 2  p,/4 {trCB] 2  p 2 /4trCD] , (1.1.9)

where

[D] - CC]-d1 dCIC]I dCc] (4.1.9a)

and

[B] - CC]-d[C] (4.1.9b)

An intrinsic time scale z is still defined to account for the hardening

or softening character of a material,

d '
z . f ; )(4.1 .10)

where f(;) is a positive function of C. If no hardening (softening) takes

place f(;)-1.

In the curvilinear system as described in section 2 of Chapter 2, the

curvilinear components of the Cauchy-Green deformation tensor were given by

- aek ae1
gkl a(2.2.8)

and the curvilinear components of stress T a by

T a al a (2.2.23)
4V T28 UP,. aX7
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Upon use of eq.(2.2.8) an alternative form of the intrinsic time can be

derived,

d; )2 -p/4 (C dC as P2  /4 C dC C dC ( .1

or, in matrix form,

C d )2 . p,/4 (tr[B])+p 2/4 tr[D] (4.1.12)

where

CD3 CC]- dCC] CC] 1dC) (4.1.12a)

and

[B] CC] dCC] (4.1. 12b)

The constitutive eq.(4.1.6), by use of eq.(2.2.23), becomes

~ [2 ~ -C fG(z-z')C (zt) dz'] (4.1.3

or

CT]-r 21 CC] + fzG(z-z,)CC(z,)] dz'1 (4.1.13a)
PO 0

4.2 Discussion of the Function Y,

In last section the function T, appears as a functional form in the

constitutive equation. How to choose the function so that it can describe

the compressible behavior of a material well needs much effort. In this

paper a particular form of T. given by eq.(4.2.1) is taken to demonstrate

the application of the constitutive equation:

Y. - (A/8)Cln(I,)] 2  , (4.2.1)
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where I is a material constant.

It is now shown that the constitutive equation with the assumed Io is

consistent with elasticity theory under infinitesimal deformation.

Substituting eq.(4.2.1) into the constitutive equation (4.1.6),

Tas- p/p,(Xln(J)CaB+ fG(z-z')Ca z')dz'1 (4.2.2)

where J is the Jacobian defined as

J-1 aY/axl . (4.2.3)

When a deformation is very small, p/p,-1, C a$-6 B, and without lose any

generality

- )  
, (4.2.4)

where X and El1 (i-1,2,3) are principal values of the deformation gradient

matrix and the strain tensor, respectively. Hence,

ln(J) - ln(l+cii) -C i+O(C2  C i • (4.2.5)

ii ii i

Eq.(4.2.5) represents the dilation of a material for infinitesimal

deformation. With the help of eq.(4.2.5), the Hooke's law is got,

T as )Iii 6a+ 2G(0)c a (4.2.6)

where X is a Lame constant and G(O) the shear modulus.

In next chapter the constitutive relation given in eq.(4.2.2) will be

used to analyze the problems by means of the finite element technique.
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CHAPTER 5 - NUMERICAL SOLUTION

A numerical algorithm based on the finite element method of analysis

of the boundary value problem is developed in this chapter. The formulation

of the finite element equations is referred to the material system, namely,

the Lagrangian formulation. The finite element formulations for both

compressible and incompressible material are developed. A computer code is

established to solve a plane strain boundary value problem under a

compressible-plastic deformation by use of the linear triangular element.

Finally, the solutions of upsetting of a block (a forging process) are

presented.

5.1 Fundamental Equation (the Principle of Virtual Work)

Equations of equilibrium, when body forces are absent, in rectangular

coordinates of a material system can be shown to be

(JT L 0 (5.1.1)

where (JT3 ) is the stress per unit undeformed area. The mixed stress T a

which is the projection of the force Ta along i-direction in spazial system,

is defined as

T a x a T iL (5.1.2)TI - I ij j , ij- Ti J a

where xm- axa/ayj, a is the Cauchy stress, ( ), represents a(/3x
J j i
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After defining U to be the displacement and ui the components of the

displacement and Su i the components of the virtual displacement,

Multiplication of Su i to the equilibrium equation (5.1.1) and then

integration of the resultant equation over the undeformed volume give the

following

I (JT i),= SuidV O = 0 (5.1.3)

The application of Green's theorem to (5.1.3) yields the equation of the

principle of virtual work under large deformation as

VO (JTN i )du dV, - fSo(JT i)uidS , (5.1.4)

where the surface integration of the right side of (5.1.4) is over the

undeformed surface. Equation (5.1.4) will be the basis of the finite element

formulation.

5.2 Incremental Form of the Endochronic Constitutive Equation

In Chapter 4 the endochronic constitutive equation for compressible

material was derived as

JT as alog(J)C a+ f0G(z-z')C z') dz' . (4.2.4)

The incremental form, with respect to the intrinsic time scale, can be

obtained from the intrinsic time derivative of (4.2.4) as

d(JT O)/dz - (A/J)JC 8* G C o+ dQ 8 (5.2.1)
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or

d(JT a) (X/J) dJ Cas+ dCM8 * dQa dz , (5.2.2)

where

S- ~Ilog(J)+G(O)

and

- dC
dQ -/-z dG(z-z') ad(dQ ain dz' (5.2.3)

0s dz dz'

For an incompres3ible material,

d(JTc) - - (dP)CMB+ 5 (dC 8 ) + dQ Cdz (5.2.4)

where G - G(O)-P and dQ remains the same as in (5.2.3).

5.3 Formulation of the Finite Element Equations

The finite element approximation is developed from a displacement

assumption within each element, which gives the displacements at any point

within the element as a linear combination of the displacements at a finite

number of nodes of the element, the coefficients being constants or

functions of the position within the element. In this section we adopt such

a displacement assumption in general form using material coordinates, i.e.,

a Lagrangian formulation.

Assuming the displacement within any element in the form

u= (x a , xa )q (58331)
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where q denotes the nodal displacements; * is the transformation function

which gives the displacements at any point within the element; x are the

nodal coordinates.

The following equations are some derived geometric relations which will

be used in the finite element formulation.

(1) The derivative of ui with respect to xO

m

ui i q (5.3.2)

where -La

(2) The increment of ui with respect to Intrinsic time scale, since i is a

function of the material system,

dui m dqm M
" - . 0 - or du I 1 dqm " (5.3.3)

(3) The corresponding spatial coordinates within the element

Yk x k+uk (5.3.4)

Hence

mm
dy- du k - *k dqm '(5.3.5)

y k + uk," .kci qka (5.3.6)

and

dm
dyk," ka dqm (5.3.7)
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(4) Since we have the relation

YkC xj 6 (5.3.8)

then

S[Yj(539)

(5) A differentiation of both sides of eq.(5.3.8) gives

d(y )x 1 + d(x') - 0 (5.3.10)dk,L )j +, YK,

Then what follows is

a a 8 aa 8 m da m ddxk -- Y x k x-i dqm - k '(5311

where

k B mXk *jB " - (defined) . (5.3.12),

(6) The Cauchy-Green deformation tensor and its incremental form are

C C- Yk,a Yk,B

and

dCa (0m y +, m y dq8 W 2* m , (5.3.13)deLO (ka k,O B+kek,a~m (Ik)yk,ayl,Bdqm

where

(ik) 2(* k ) (defined) (5.3.14)

(M) The Jacobian and its incremental form are

l- 
5I
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- -"

and

dJ -Jx * d ,, m

J J' dqmft J* dqm "(5.3.15)

Having the assumed displacement, we get the equilibrium equation for an

element by direct substitution of (5.3.1) and (5.3.2) into the equation of

the principle of virtual work (5.1.4)

fo (JTOL ) M5qdVo- fSo(JT 1 )0 6%n dSo (5.3.16)

Since the virtual displacement Sqm (m-1,2 ..... ) are independent of each

other, the following m equations are obtained

fVo(JTa ), d V ,- fm (5.3.17)

where

fm" I JT a)0 n dS°  (5.3.18)

The incremental form of (5.3.17) can be written as

I d(JTai) mdVo- d(f)ex (5.3.19)

wnere

d(f,) " -sd(JTi) m n dS, (5.3.20)

From the tensor transformation

aki X x1 T (5.3.21)
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and

T x2 Xk x T (5.3.22)

then

d(JT'i) - x x B JT (5.3.23)

dk k xl JTa

Applying the chain rule of differentiation to (5.3.23) and having recourse

to (5.3.11) and (5.3.21), it is obtained

dCJT' - d~xa) xT Bx JT +xa d(xY) xB JTI k k ~i Ya k k i YB

x(xTd )JT YB ak x k xi d(JTkk Ys k k YB

-[Xam+(J k)+Xkam (Ja )+Xa* s(J s )]dq + x xa Y d(JT3 Xk k k 3 k3 s mYk k i YB
-xa {2,m (Ja) + Ipm (a )}dq + a x a d(JT ) (53.24)

k (ks)si siks m xk Xk i YB

S-ztitution of eq.(5.2.2) into the last term in eq.(5.3.24) and then

eq.(5.3.12) into the resultant equation gives

a YB 8 LY Bxk xk xi y [(/J)(dJ)CY8+ Gd(C Y)+ dQ 6dz]

tx * { 64 + 2G(ik) ]dqm+ dQkidz) (5.3.25)

where

YBdQ-ki Xk x dQyB . (5.3.26)

Substitution of (5.3.25) back into (5.3.24) yields

d(JTa ) (x* m a -2*m -21pm  (a)*mW Iq~Q I (-.7

i)k nnki (ik)- (k3)(ks)kid(5.3.27)
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Finally, (5.3.19) in conjunction with (5.3.27) results in the following, a

set of j linear equations in dqm ,

f ~ 4 £x 2GV( i4'0-~ (JO )-M *1 (WO ) dV* dqm
V0  nn kk (1k)*ik 2(kS) ik si Vsi 1k ks

" d(fJ f * V kdQkidzdVo (5.3.28)

Alternatively, (5.3.28) can be written in matrix form as

[kjI dqm a d(f ) - d(f )p- d(f ( t ) , (5.3.29)jm m ex jp j

where the element stiffness matrix kjm is

k [ fI 'm '0 - 6 *-2 m 1jO)4 m J (J J]Vjm" V, nn kk 2ck)ik-(ks) ik(si siik (ks)]dVo

and the incremental pseudo-force vector

d(f)p -- f V dQ dzdV o  , (5.3.30)
j p V0 ik ki

where the integration is performed over the undeformed area of an element.

Considering the equilibrium of the entire structure, we obtain the

structure stiffness matrix in the form

[K] (dql - (dFJ (5.3.31)

where CK] is global stiffness matrix, {dq) the total incremental nodal

displacements, {dF} the total incremental nodal force which consists of

applied force and the incremental plastic pseudo-force calculated using the

second equation of (5.3.30).

To complete this section, the formulation for incompressible materials

is derived through the mixed finite element method as follows. The
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4.

displacement and the pressure are taken as the primary variables. The

displacement within any element remains in the form of (5.3.1),

u X a(, xa)qm (5.3.1)

and the pressure within the element is approximated as

P - Pn (x ,x)p , (5.3.32)

where p n is the nodal pressure. The degree of the interpclation function pn

for the pressure should be one order less than the degree of the function 0

for the displacements in order to have consistency of approximation for the

displacements and the pressure. This will be seen clearly from the following

derivation because P is one order less differentiable than ui. The

incremental form of P is

- P n (,x'dp n (5.3.33)

When the incremental form of constitutive equation for incompressible

material (5.2.4) is used in the last term of eq.(5.3.24) with J-1 (hereafter

in this section),

a Y B 8xk x x d(T Y) - xk xk x L-dP C y+ G dCC Y)+ dQ Sdz]

Xa [ nd dp + 24 m qmd zj(334k B k ki n (1k YB
- x -P 6kl Pn 2G*k)dq dQkidZJ . (5.3.3)
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Substituting (5.3.34) into (5.3.24),

1 k (1k),~' ( i s s in k

Finally, (5.3.19) in conjunction with (5.3.35) results in the following

-m i m jm jnJI IVo[2Gg,( k)Ik- 2 (kS)*ik(JG si *sqkWas)]Vdmi d pn

- d(f ) - f o dQ dzdVo (5.3.36)

,j ex V0 1k ki 5..6

In matrix form eq.(5.3.26) becomes

*kmdqm + CL JdPn - d(fJ) + d(fj)p- d(f (t)) (5.3.37)

where the element stiffness matrix kjm is

- m 4  m & (J )_iJl A(Jok)JdVo
kjm V0  i2Gp(ik)ik- 2(ks)1k si s# 1k

5in - von 4 JdVo (5.3.38)

and

d(f ) = - f V JkdQkidzdVo

Now we have m equations but m+n unknowns (m for displacement and n for

pressure). The constraints of incompressibility, i.e., J-1 or J-0 must

considered. From equation (5.3,15),

J*ildqm . 0 (5.3.39)
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n

If we multiply p to both sides of eq.(5.3.39) and then integrate the

resultant equation over the undeformed element, we can obtain n additional

equations given by eq.(5.3.40)

Pno m , vo dqm - 0 . (5.3.40)

In the matrix form, (5.3.40) becomes

[u nm]dqm-O (5.3.41)

The simultaneous equations of q's and p's can be written as

k L rq d (t)

L nmJ tdpI 0 (-.2

For an entire structure we have the equation in the following form,

[dp~ l (5.3o43)
LN 0 dpN 0 34

where N and M are the total degrees of freedom for displacement and pressure

In the entire structure.

In general, the integrands of (5.3.30) and (5.3.38) are functions of

the material coordinates xa. It becomes very complicated when high order of

shape function is used. Therefore the numerical integration technique must

be adopted in the calculation. However, when the linear triangular element
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is used, *'s, J, and a's are constants within each element at each

incremental intrinsic time. This simplifies the calculation a great deal. On

the other hand when a relatively fine mesh is used, the linear triangular

elements can provide the convergent results. The linear triangular elements

are still used by many researchers. Hence it will be used in this work. The

formulation of triangular element for plane strain problem will be discussed

in detail in next section.

5.4 Formulation of Linear Triangular Element for Plane Strain

The plane strain is considered as a material deformation occurring in a

plane while the deformation in direction normal to the plane vanishes. Such

a deformation can be described as

- Yi(X ,t )  (i,a - 1,2)

y3  a x
3  (5.4.1)

The Cauchy-Green deformation tensor and its inverse and its incremental

form can be calculated as follows

[ 1 1] 0
CCCa I 0 I

and

C a - (p,v - 1,2) (5.4.2)
0 o

where C C , and C are functions of x' and x 2 only. The stresses
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related to the x3 direction from (5.2.1) are the following

T2 ,3 Os 0

T23' 023' 0 (5.4.3)

and

T,,- a,,- log(J)/J

where J - 1C 81 IC remains the same for both cases. Hence we need

only deal with the quantities related to the x1 and x2 directions.

In the linear triangular element, the deformation can be written

explicitly as

Y- = x + um x +i x aq (1-1,2; t-0,1,2; m-1,2,...6)

y3 - x (u3-0) (5.4.4)

where the *'s comprise a set of constants related to the nodal coordinates.

For a typical triangular element shown in Fig.31, we denote the nodal

deformation as

" (qllq2qq*q..qs'q.)T

(u,1,v1,u2,v2,u31v3 )
T  (5.4.5)

where u's are the displacement in x1 direction and v's in x2 direction,

respectively. The symbol (.)T denotes the transpose of a vector.
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Then, we can write the displacement in eq.(5.4.4) more explicitly as

following

a, 0 a. 0 a. 0

u- C1 x, x21 b, 0 b2 0 b, 0 qm

Ci 0 C2  0 C, 0

and

o a, 0 a2 0 a, (5.4.6)

v- C1 x x 2 ] 0 b, 0 b2  0 b, [am}

o C, 0 C2  0 C,

where

a,- (x' 0 -i20 )(A
(2)x(3) - (3) (22)

b,- (X 2 1 x 3))/(2&) (5.4.7)

C,- (xI3 1- x12))/(2)

and other a's, b's and c's can be obtained by the subscripts (1), (2), and

(3) permuting in a natural order. A is the area of the triangle,

1 xi
(1) X(1)

& 1 x 1 2 1 (5.4.8)
(2) (2)(..8

1 x I x 2
(3) (3)
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The derivatives of displacements with respect to the material system
U

u i'a. ¢~qm (aL-1,2; 1-1,2; m-1,6) ,(5.4.9)

where the constants O's, in matrix form, can be written as

[Oi.]m . [ bn cn for m-(2n-1)

and n - 1,2 3 (5.4.10)

[0]m [ bn 0 n 1 for m - 2n

Since 3's as well as I's, J, and a's are constants at each intrinsic

time step, the element stiffness (5.3.29) and (5.3.30) become, in the case

of linear triangular element as

k] - d% ex d(f )p,- dftt) , (5.4.11)

where the element stiffness matrix k,, is

l~jm- j m ¢ i,
kX' + 2X5u mA 2G~±)fk2*, (Ja )-*m &0 WOajm nn kk (1i)4i- ks)'ik si 3i 1k k3

and the incremental force vector

d(f) - -*OJdQkA dz . (5.4.12)

1 k ki

At this moment, the degenerate cases of (5.4.10) and (5.4.12), namely

the case under the small deformation, are given bellow. In eq.(5.4.12) if

's - 0 , and *'s - O's, the equations represent the small deformation of

plasticity [55],
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EkIm] dqm - d(f e+ d(f )p- df (t) (5.4.13)

where

k .A [Xnn0kk 2G(O)o
jm a k(ik) ik~

d(fj) - dQ A dz (5.4.14)
i p ik ki

Furthermore, if fp- 0, the equations represent the small deformation of the

elasticity [57],

[k jm lqm" (f J) ex '(5.4.15)

where the element stiffness matrix kjm is

jm nn kk U)i
-A[- A [ * , 2G,( ik)m k] (5.14.16)

and (fJex is an external force vector.

5.5 Brief Discussion of the Calculation of Q's

It has been seen that the effect of plasticity is represented by the

pseudo-force dfp in (5.5.12). In the calculation of this force, dQ plays a

very important role. Recall dQ in (5.2.3)

\ aB z) o dG(z-z') dC as
dQ as-z-- J. dTz dz' (5.2.3)

At each incremental step, dC , needs to Integrate from 0 to z, the cur'rent

intrinsic time scale. To calculate dC S numerically, the equation for dCas
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at zi+ 1  z + Az after knowing the value of C a at zi is now derived.

Eq.(5.2.3) at z 1 1 can be written as follows

dQ ( )Wfz 1+1 dG(z-z') dC asdz

s i+e dz dz'

zi dG(z-z') dCs zi+AZ dC8

dz dz' dz i dz z' ,. (5.5.1)

From the mean value theorem and the smoothness of C , the last term

in eq.(5.5.1) can be written, as a good approximation,

f zI +A Z dG (z -z ' ) 
dCa sdz  dz,- -dCaBz I z~ IfzI Az I dG( z-z' ) d 552zIz d. d) z

Substitution of G(z) Gr e-arz into (5.5.1) gives

(r) - dC -dQ (z+) = (Q (z )e -rAi + G (e- r ~i - 1)} i-0,1
C i+1 a$ i dz z .r

where Qas (O)-O. (5.5.3)

Eq.(5.5.3) tells that the history dependence of the material response

[through dC a(zij+)J at the intrinsic time zi.1 will be determined by

Q 8 (z) plus the effect caused only by the new incremental step through

dC adz- Izi .,and Azi+.

For r-1, i.e., G(z)- G, e- ,

dQ (z ) Q (z )ez Azi + I G0 (e- A Z - ) . (55.4)
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5.6 The Iterative Process and Programming Steps

After defining the problem, giving the dimension and tolerance of the

intrinsic time, meshing the domain, and calculating the values of s's and

the area of each element, the Incremental load step starts. For each

incremental step the values of *Is are updated and then the stiffness matrix

is calculated. An initial value AzO is assigned to the increment of

intrinsic time at every step. The plastic pseudo-forces corresponding to the

dzo-are then .;valuated. Now the linear simultaneous e quations of incremental

nodal displacements are set. After imposing the boundary conditions, this

set of equations is solved. Upon use of the Incremental displacements,

incremental strains, stresses, and Cauchy-Green deformation tensor etc. are

obtained. The incremental intrinsic time dz Iis calculated. Knowing the new

incremental ''.trinsic time, the new pseudo-force are again obtained. The

simultaneous linear equations with the same stiffness matrix are solved and

new incremental nodal displacements are obtained. The new dz follows to the

new displacements. The iteration process is continued until the difference

in dz between any two consecutive Iterations Is less than some defined

tolerance. Then the next new incremental step is repeated. Above iteration

procedure is described in the flow chart as shown in Fig.32.

On the basis of the formulae In section 5.4 and the flow chart in

Fig.32, a computer program with Fortran language called FELP is developed to

analyze the plane strain of finite plastic deformation problems. The

computer program consists of five parts.
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Part one

In this part the dimensioning of the program variables is first set up

and the main control parameters (such as the total number of elements,

nodes, the number of degree of freedom for each node, etc.) and the material

constants (G., a, and A) are input. The informations of mesh, namely the

rcoordinates for every node and the nodes for each element are then input.

The nodes of elements are stored in an array NOD(N,I) In which N denotes the

nuamber of element and I the number of node. The array plays a very important

role In the connection of elements and whole structure. The node and element

data are defined by two ways in the program, which are automatic mesh

forming in the compute program and the data Inputing from read statement.

Former way is efficient for relatively regular domains while the later way

is for irregular ones. The necessary boundary conditions are read in.

Finally all input and calculated data are printed out for checking and

recording.

Part two

The quantities related to the material system are calculated in this

part, which include the area of the elements and O's, i.e., a's, b's, and

c,s defined in eq. (5.4.7). These quantities also are primary variables to

the stiffness matrix. To save storage the stiffness matrix is stored in the

half bandwidth. So the width of the half band Is obtained in this part. The

arrays are initialized and get ready for following main calculation.
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Part three

We start outer do-loop for the incremental steps of load or

deformation. The values of incremental forces or deformations at each step

"* are applied through the boundary conditions. For each step the values of I's

* are updated. Then the stiffness matrix for each element is obtained upon use

of eq.(5.4.12) and summed to the half banded global stiffness matrix. This

is accomplished by a subroutine called STIFF. What follows next is imposing

the displacement boundary condition in the equation to get the modified

global stiffness matrix and the modified force vector through a subroutine

BNAR. The initial force boundary condition, i.e., node forces are added to

force vector directly. It has been seen from eq.(5.4.11) that to complete

force vector needs to add the pseudo-plastic force. We will describe this in

inner do-loop in part 5.

Part four

The inner do-loop is designed for the iteration process. At each

incremental step, an initial values of intrinsic time dzO is given. The

pseudo-plastic forces are calculated upon use of the eq.(5.4.12) and the

subroutine PF. Then they are added to the appropriate positions in total

force vector. Now the linear simultaneous equations for the nodal

displacements are set. The equations are solved by use of the Gauss-Jordan

method. After obtaining the displacement increments, new intrinsic time dz

can be obtained by calling a subroutine DZ. The iteration process continues

until the value (dzo-dz)/dz less than the tolerance.
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Part f ive

When inner do-loop stops the converge displacement increments are

obtained at the incremental step. Then the necessary quantities such as

stains, stresses, and other related parameters through a subroutine called

RES can be calculated. If the results for incremental values are interested,

they are printed out. Otherwise they are added to the total values and the

next step starts. The program consists of the main program and 10

subroutines. It will listed in Appendix A.

5.7 Numerical Example

Previous analysis is now applied to study a problem of metal forging -

- upsetting process of a block shown in Fig.33. A similar problem "The

upsetting of a cylindrical block " was taken up by a Joint Examination

Program of the Validity of Various Numerical Methods for the Analysis of

Metal Forming Processes and discussed around table by fourteen groups in the

IUTAM SYMPOSIUM TUTZING/GERMANY [58J. The collected results showed

considerable discrepancies. However, what agreed In discussion was two

important factors responsible for the discrepancies, which are tle

selections Of the elements and the deformation increments. What was

suggested was to use finer element and smaller deformation increment up to

0.25%. To explore the computational capability of the theory in our

research, following data will be taken In the calculation.

The dimension of original block are set to be 2 unit in width, 3 in

height, and 1 unit in third direction since the plane stain is concerned.

Sticking, i.e., no slip condition, is assumed along the tool-4ork Interface.
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The material constants Go, X , and a are set to be I., I., and 200. The

geometrical dimension and the material constant are taken in such a way so

that all quantities in the problem are normalized. Go-X in elastic case

represents v-0.25. Due to the symmetry of the problem, a quarter part of the

block is analysed by using the mesh division depicted in Fig.34 in which we

have 143 nodes and 252 elements. The increment per each reduction (in hight)

step is set to be 0.001.

Fig.35 shows the deformation profiles for different reduction levels,

When reduction reaches 0.7, i.e., about 50%, the folding was observed.

Fig.36 shows the distorted grid vs. the original grid. The relatively rigid

part has been seen in the up-left of the domain, i.e., the up-middle of the

block. Fig.37 gives the bulge ratio, w m/w, at the different stages ofmax

reduction in height. At large reduction, the material gets softer in the

x1 -direction. The variation of intrinsic time z respect to the reduction is

shown in Fig.38.

Fig 39 illustrates the computed results of upsetting load as a function

of the reduction in hight. The variations of stresses with respect to the

reduction and the intrinsic time at elements No.251 and No.231 are shown in

Fig.40-43. Fig.40 and 42 give the variation of stresses at element No.251 in

x2-direction with respect to the reduction in height. The results show the

stress in this element reaches the maximum at a critical value of the

reduction and continues to decrease so that the sign of the stress is

changed. However the variation of stress at element No.231 which is located
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inner of the domain does not show the same phenomenon. The phenomenon

occurred at element No.251 is due to the dramatic distortion of the

structure. In Fig. 44-45 we show the distribution of stresses in Y, and Y2

direction along with the width of the upset block.

The convergence in this calculation in this problem is excellent. Under

the current chosen incremental reduction, the average number iteration for

each increment step is two. This is a beauty of the endochronic theory in

finite element method. because we control dz, the intrinsic time, in the

iteration which plays the crucial rule in the endochronic 
theory.
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CONCLUSIONS AND RECOMMENDATIONS

Finite plasticity has very significant applications in engineering

problems. With the rapid progress of the modern technology, developing a

sophisticated theory and applying it to solve engineering problem are the

tasks of the science and engineer.

Endochronic theory of plasticity has come to a fully developed stage

after about 15 years' development since 1970's. Its predictive power of the

behavior of materials, computational capability, application to the

practical problems have been seen and proved through analysis and

experiments. In this research we have studied extensively the endochronic

theory of plasticity and its practical applications under large

deformatJon. Again we show the contribution of endochronic theory to the

plasticity regime.

The endochronic theory of incompressible plasticity was reviewed and

applied to the analysis of a set of special problems which have significance

in the theory as well as the practice of metal forming processes and

pressure vessel structures. To our knowledge, this is the first time in the

field that this set of problems are solved in closed form solutions.

The theory was also extended to model compressibility of plastic

deformation. Incompressibility is an idealization and simplification of the

reality and is the key point of the development of the classical plasticity.

We added a term, representing the volume change, to the free energy and

developed a constitutive equation of compressible plasticity with a

functional term which reflects the compressibility of materials. Then with a
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special form of the function, we developed a numerical scheme with a finite

element technique and a computer program code for plane strain problems.

Finally, an example of metal forming of forging process (upsetting a block),

was analyzed and solved by the developed computer program. The solution

obtained by this method is very resonable. The application of endochronic

theory to the large plastic deformation has a great potential for

application to more complicated engineering problems.

The numerical algorithm could be extended to cover axial symmetry and

three-dimensional problems. Carefully controlled experiments are needed for

further verification of the validity of the theory.
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APPENDIX - COMPUTER PROGRAM

C PROGRAM NAME FELP
C
C FUNCTION ENDOCHRONIC ANALYSIS OF LARGE PLASTIC
C DEFORMATION OF PLANE STRAIN
C
C DISCRIPTION OF IMPORTANT PARAMETERS IN THE PROGRAM
C NEM --- NUMBER OF ELEMENT
C NNM --- NUMBER OF NODES
C NDF -- NUMBER OF DEGREE OF FREEDOM AT A NODE
C NPE -- NUMBER OF NODES PER ELEMENT
C TH -- THICKNESS OF PLANE
C GO,GAMA,CR1,AR1 --- MATERIAL CONSTANTS RELATED TO KERNEL FUNCTION
C NRMAX,NCMAX - MAXIMUM NUMBER OF ROW AND COLUM OF STIFFNESS MATRIX
C MAXE,MAXD --- MAXIMUM NUMBER OF ELEMENT AND DISPLACEMENT B.C.
C NHBW -- HALF BAND WIDTH
C ERRO,ERR -- TOLERANCE FOR INTRINSIC TIME
C NBDF,NBSF NUMBER OF NODES (DISPLACEMENT AND FORCE PRESCRIBED)
C
C DISCRIPTION OF IMPORTANT ARRAIES IN THE PROGRAM
C GSTIFT(NRMAX,NCMAX) -- BANDED GLOBEL STIFFNESS MATRIX
C GF,GFE,GFP(NCMAX) -- VECTORS OF TOTAL, APPLIED, AND PSEUDOFORCE, RESPECTIVFLY
C XT,YT(NNM) --- MATERIAL COORDINATES OF NODES
C BI'S,CI'S(NEM) -- i DIEEERENCE OF MATERIAL COORDINATES B'S AND C'S
C PSIT(NEM,2,2,6) -- VALUES OF
C DXYT,DYXT(NEM) DX/DY AND DY/DX
C CX,CY,CXY(NEM) CAUCHY-GREEN DEFORMATION TENSOR
C DCX,DCY,DCXY(NEM) -- INCREMENTAL OF CAUCHY-GREEN DEFORMATION TENSOR
C TX,TY,TXY(NEM) --- STRESS
C DZO,DZ1(NEM) -- PREVIOUS AND PRESENT INCREMENTAL INTRINSIC TIME
C BQ'S Q'S(NEM) --- QUANTITIES RELATED TO CALCULATION OF PSEUDOFORCEO
C UT,VT(NNM) --- DISPLACEMENT AT NODES IN X AND Y DIRECTION
C IBDF,VBDF(NBDF) --- NODES AND VALUE VECTOR OF DISPLACEMENT B.C.
C IBSF,VBSF(NBSF) -- NODES AND VALUE VECTOR OF FORCE B.C.
C NOD(NEM,3) -- NODES OF ELEMENTS
C VOT(NEM) - VOLUM OF ELEMENTS
C

IMPLICIT REAL*8(A-H,O-Z)
DIMEdSION GSTIFT(300,50),GF(300),GFE(300),GFP(300),GF1(300),
I DXY(2,2),DYX(2,2),NEDGE(50),IPRINT(30),DELT(700),
1 BRT(700),SEL(700),FTU(TOO),EDZ(TOO), SELl(700),
1 EDZ1 (260)
COMMON/UNITI/BII(260),B12(260),BI3(260),CII(260),CI2(260),
1 C13(260)
COMMON/UNIT2/DCX(260) ,DCY(260),DCXY(260) ,DZO(260) ,DZ1 (260),
1 CX(260),CY(260),CXY(260),TX(260),TXY(260),TY(260),
1 DXYT(260,2,2),DYXT(260,2,2),QX1(260),QY1(260),QXY1(260),
1 BQX1(260),BQY1(260),BQXY1(260) ,UT(150),VT(150),
I PSIT(260,2,2,6)
COMMON/UNIT3/XT(150),YT(150),NOD(260,3),VOT(260)
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COMMON/UNITJ4/IBDF(50),VBDF(50),IBSF(20),VBSF(20)
COMMON/CONST/NE4 ,NNM ,NDF ,NPE

C
DATA TH/T.ODO/
DATA NRMAX,NCMAX,MAXE,MAXD/300,50,260,50/
DATA GO,GAMA,CR1,ARl/l.d.O,1.OD+0,1.OD+O,200.OD+O/

C
ND F-2
NPE-3

C
READ( 15,*)NNPNDZ

C NNP -- NUMBER OF INCREMENTAL STEPS
C NDZ -- NUMBER OF ITERATION FOR INTRINSIC TIME
CJ

READ( 15,*)NPRINT
DO 9605 I-i ,NPRINT
READ(15,*)IPRINT(I)

9605 CONTINUE
C NPRINT -- NUMBER OF INTERMEDIATE STEPS AT WHICH RESULTS PRINTED
C IPRINT(NPRINT) -- STEP NUMBER VECTOR
C

READ( 15,*)IMES
C IMES -- TYPE OF INPUT: IMES-0 INFORMATION FOR NODES AND ELEMENTS
C FROM READ STATEET IMES-1 FROM CALCULATION FOR REGULAR DOMAIN
C

IF(IMES.EQ.O)GO TO 9500
C

C-IFORMATION FOR RECTAGULAR BLOCK IN FORGE PROCESS
C NX,NY -- NUMBER OF NODES IN X AND Y DI RECTION
C XL,YL LENGTH '-rc PLATE IM X AND Y DIRECTION
C ITYPE -- lTYPE-1 FIXD END, 1TYPE-0 SHEAR FREE END

READ( 15,*)NX,NY,XL,YL,ITYPE
CALL NODE(NX,NY,XL,YL,NEQ)
CALL DFSF(NX,NY,ITYPE,NBDF,NBSF)

ND2*NX +2*NY- 4
DO260 I -1 ,NX

NEDGECI)-I
20NEDGEONXC.1)..3*N1I~

NEDGE(NXNYI)-NNWI .

NEDGE(2*NXNY-1 )(2*NX-1 )(NY-2)+l
DO 270 I-I ,NY-3
NEDGE(NX+I.1 )mNEDGE(NXI)42*NX-1
NEDGE(2*NX4NY-11)-NEDGE(2*NX+NY-2+I)-2*NX41

270 CONTINUE
Go To 9600

9500 READ(15,*)NEM,NNM
DO 9300 I-i PNNM
READ(15,*)XT(I) ,YT(I)

9300 CONTINUE
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DO 9310 I-1,NEM
RE-AD(15,*)NOD(I,1 ),NOD(I .2) ,NOD(I .3)

9310 CONTINUE ,
READ( 15,*)NBDF
DO 9320 I-i ,NBDF

9320 CONTINUE
READ ( 15, *)NBSF
DO 9400 1-1 ,NBSF
RE.AD( 15,*)IBSF(I) ,VBSF(I)

9400 CONTINUE
C
9600 NEQ-NNM*NDF

WRITEC 16, 300)
300 FOMAT(4X,'ELE.iNT',10X,'NODES'/)

301 FORMAT(2X,15,7X,315)
WRI TEC( 16, 310)
WRITE(16,305)

305 FORMAT(4X,'NODE' ,15X,'COORDINATES'/)
WRITE(16,306)(N,XT(N),YTCN),N-1 ,NNM)

306 FORMAT(1X,15,1OX,2F10.4)
WRITEC 16,310)

310 FORMAT(///
WRITE (16, 315) NBD F

315 FORMAT(4X,'DISPLACSMENT B.C.' TI5/)

IF(NBDF.EQ.O) GO TO 10
WRITE( 16, 314)

314 FORMATTM, 'POSITION VALUE'/)
DO 5 I-1,NBDF
WRITE(i 6,*)IBDF(I) ,VBDF(I)

5 CONTINUE
10 WRITE(16,310)

WRITE( 16,31 6)NBSF
316 FORMAT (4X, 'FORCE B.C.' 15/)

IF(NBSF.EQ.0) GO TO 8
WRITE(16,31 4)
Do 6 I-i ,NBSF
WRITE(16,*)IBSF(I) ,VBSF(I)

6 CONTINUE
C

8 ERRo-o.01
WRITE0i6,310)
WRITE(16,*)'GO -',GO
WRITE(16,')LAMDA -',GAMA
NH8W -O
0O 15 N-1,NE~I
DO 15 I-i ,NPE
DO 15 J-1,NPE

IF(NHBW.LT.NW) N1IBW-NW
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15 CONTINUE
WRITE (16, 310)
WRITE(16,325) NHBW

325 FORMAT(4X,'NHBW -',15)
C

DO 20 I-i ,NEQ
GFECI)-O.O

20 CONTINUE
C

DYXC 1,1)-i.
DYX(2,2)-1.
DYX(i ,2)-O.
DYX(2, 1)-0.
DXY(l 1)-i.
DXYC 2,2)-i.
DXY( 1,2)-O.
DXY(2,1 )-O.
DO 35 I-i ,NEM
DZO(I)-O.
DZ1CI )-O.
rxCI )-O.l
TXYCI)-O.
TYCI)-O.
BQX1 CI)-O.
BQYi (I)-O.
BQXY1 (I)-O.
CXC I )-1.
CY(I)-1.
CXY CI )-0.
DCXCI )-O.
DCY(I)-O.
DCXY(I )-O.
DO 36 11-1,2
DO 36 12-1,2
DXYTI,I1 ,12)-DXYCI1 .12)
DYXTC1,I11,12)-DYX(I11,12)

36 CONTINUE
35 CONTINUE

DO 38 I-i ,NNM
UT(I )-O.
VT(I)-O. '

38 CONTINUE
C

CALL BC(TH)
C
C****** STARTING THE LOADING STEPS ***

C
Do 60 NP-i ,NNP
DO 45 I-i ,NEQ
GF1CI)-O.
DO 45 J-1,NHBW
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GSTIFT(I,J)-.
415 CONTINUE

IR ES-O

CALL STIFF(GSTIFT,NRMAX,NCMAX,GO,GAMA)
C

IF (NBDF.EQ.O)GO TO 100
DO 102 I-i ,NBDF
IE-IBDF (I)
VE-VBDF CI)
CALL BNDRY(NRMAX,NMAX,NEQNHBW,GSTIFT,GF1,IE,VE)

102 CONTINUE
100 CONTINUE

C
IF(NHSF.EQ.O)GO TO 105
DO 25 I-i ,NBSF
II-IBSF(I)
GF1 (II)-GF1 (1I)+VBSF CI)

25 CONTINUE
105 CONTINUE

C
C$$$$$ STARTING THE INTERATION FOR OZ $$$$$
C

DO 110 NZ-1,NDZ
DO 115 I-i ,NEQ
GFP(I )-0.

115 CONTINUE
C

CALL PF(GFP,IBDF,NR?4AX,MAXD,CR1,AR1,NBDF)

DO 16o N-i ,NEQ
GF(N)-GF1 (N)-GFP(N)

160 CONTINUE
C

CALL SOL(NRNAX.NCMAX,NEQ,NHBW,GSTIFT,GF,IRES)
IRES-i

C
CALL DZZ(GF,NRMAX)

DO 175 N-i ,ND

Zi-OZi (N)
ZO-.DZO(N)
ERR-DABS(Zl-ZO)/Z1
IF(ERR.GT.ERRO) GO TO 180

175 CONTINUE
ITER-NZ

GO TO 200
18v00D 210 N-1 NEM

DZO(N)-DZl (N)
210 CONTINUE
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110 CONTINUE

C$$$$$ ENDING THE INTERATION FOR DZ $$$$$
C

200 CONTINUE
C

CALL RES (GO, GF,NRMAX, GAMA)
C
C QUANTITIES RELVENT TO BLOCH FORGING PROCESS

DISMAX-XL4-UT (NNM)
DISRT-DISMAX/X.
DELTCNP)-VTC1)
BRT(NP)-DISRT
SEL(NP)-TY(NEM-5)r
SEL(NP)-TY(NE4-21)
EDZ(NP)-DZ1 (NEM-5)
EDZi (NP)-DZ1 (NEM-21)
SrY-o.
JJJ-IX-1
DO 2514 I-i ,JJJ
STY-.TY (14 *-3) + 37

2514 CONTINUE
FTU (NP)-STY/JJJ

C PRINTING INTERMIDIATE RESULTS
C

DO 2005 1-1 ,NPRINT
IF(NP.EQ.IPRINT(I)) GO TO 2006

2005 CONTINUE
GO To 60

2006 WRITE(16,310)
WRITE(16,3140)

3140 FORMAT (4X, 'EEMET STRAIN?!)
DO 2000 N-1,NEM

EY-(CY(N)-1.Od.0)/2.Od.0
EXY-CXY(N)/2.0d+0
WRITE(1 6,2010)N.EX,EY,EXY

2000 CONTINUE
2010 FORMAT(2,15,320.7)

WRITE(16,310)
WRITEC16,600)

600 FORMAT(4X, 'ELEMENT STRESSES 1/)
DO 220 N-1,NE4
WRITE(16,605)N.TX(N) ,TY(N) ,TXY(N)

220 CONTINUE
605 FORMAT(4X,5,4F5.7)

WRITE(16,jlO)
WRITE(16,J410)

410 FORMAT(4X, I NODES DISPLAC24ETS'/)
DO 230 N-i ,NNM
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WRITE( 16, 41 5)N,rJT(N) ,VT(N)
230 CONTINUE
415 FORMATC4X,I5,J4X,2Fl5.10)

WRITE( 16,310)
WRITEC 16, 420)

420 FORMAT(L4X,' NODES STRESSES'/)
DO 250 I-i ,NNM

SUMX-0.0D+O

StMY-0.OD.0
SUMXY.0.ODi.O
DO 255 N-i ,NEM
DO 255 J-1 ,NPE
NI-NODCN ,J)
IF(I.NE.NI) GO TO 255
SUMX-STJMX.TX(N)
SUMY-SUMY4.TY(N)
SUMXY-SUMXy+TXY(N)
NCON-NCON. 1

255 CONTINUE
SUMX -SUMX/NCON
SUMY-SUMY/NCON
SUNXY -SUMXY/NCON
WRITE(16,605)I ,SUMX,SUNY,SUNXY

250 CONTINUE
WRITE(16,310)
WRITE( 16,610)

610 FORIAT(4X,'EDGE'/)
DO 275 I-1,ND
II-NEDGE(I)
UD-XT(II)+tJT(II)

WRITEC 16,*)UD,VT,
275 CONTINUE

60 CONTINUE
C
C***** ENDING LOADING STEPS *~
C
C PRINTING QUANTITIES RELVET TO BLOCH FORGE PROCESS

WRITE(16,310)
WRITE(i 6,610)
DO 280 I-1,ND
II-4EDGECI)

280 CONTINUE
WRITE(16,310)
WRITE(16,62o)

620 FORMAT(4X,'RATIO'/)
DO 290 N-i ,NNP
WRITE(16,*)DELT(N) ,BRTCN)

290 CONTINUE
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WRITE(16,310)
DO 291 N-i ,NNP
WRITE(1 6,*)DELT(N) ,SEL(N)N

291 CONTINUE
STOP

C
SUBROUTINE SOL.(NRM,NCM,NEQNS,NBW,BAND,R{S,IRES)

C***SOLVING A BAND SYMMETRIC SYSTEMS OF EQNS
C***IN RESOLVING, IRES .GT. 0. LHS ELIMINATION IS SKIPPED

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION BAND(NRN,NCM) ,Rl{S(NRM)
MEQNS-NEQNS- 1
IF(IRES.GT.O) Go TO 40
DO 30 NPIV-1,MEQNS
NPI VOT-NPI V+1
LSTSJ B-N P V+N BW- 1
IF(LSTSUB.GT.NEQNS) LST JB-NEQNS
DO 20 NROW-NPIVOT,LSTSUB

C***INVERT ROWS AND COLUMNS FOR ROW FACTOR
NCOL-NROW-NPIV~1
FACTOR-BAND(NPIV,NCOL)/BAND(NPIV,l)
DO 10 NCOL-NROW,LSTSUB
ICOL-NCOL-NROW.1
JCOL-NCOL-NPI V.1

10 BAND(NROW,ICOL)-BAND(NROW,ICOL)-FACTOR*BAND(NPIV,JCOL)
20 RHS(NROW)-RHS(NROW)-~FACTOR*RHS(NPIV)
30 CONTINUE

GO TO 70
~40 Do 60 NPIV-1,MEQNS

NPI VOT-NP1 V.1
LSTSUJB-NPIV.MBW-1
IF(LSTSUB.GT.NEQNS) LSTSUB-NEQNS
DO 50 NROW-NPIVOT,LSTSUB
NCOL-NROW-ANPI V.1
FACTOR-BAND(NPIV,NCOL)/BAND(NPIV,l)

50 RHS(NROW)-RHS(NROW)-FACTOR*RHS(NPIV)
60 CONTINUE

C***BACK SUBSTITUTION
70 DO 90 IJK-2,NEQNS

NPIV-NEQNS41JK.2
RHS(NPIV)-RHSCNPIV)/BAND(NPIV,l)
LSTSJ B-N P1V-NBW+ 1
IF(LSTSUB.LT.1) LSTSUB-1
NPI VOT-NPI V-i
DO 80 JKI-LSTSUB,NPIVOT
NROW-NPIVOT-JKI4.STSUB
NCOL-NPIV-NROW.1
FACTOR-BAND(NROW,NCOL)

30 RHS(NROW)-RHS(NROW)-FACTiOR*RHS(NPIV)
90 CONTINUE
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RHS(l)-RHS(1)/BAND(1 .1)
R ETUJRN
END

C
SUBROUTINE BNDRY(NRMAX,NCMAX,NEQ,NHBW,S,SL,IE,SVAL)

C***THIS PROGRAM IMPOSES THE PRESCRIBED B. C. ON
C***THE SYSTEM MATRIX(BANDED SYMMETRIC MATRIX)
C***S IS THE STIFFNESS MATRIX
C**SL IS THE LOAD VECTOR
C***IE IS THE LABEL OF THE VARIABLE THAT IS PERSCRIBED
C**SVAL IS THE VALUE OF PRESCRIBED VARIABLE

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION S(NRMAX,NCMAX) ,SL(NRMAX)
IT-NHBJ- 1
I-IE-NMBW
DO 10 II-1,IT
1-1.1
IF(I.LT.1) GO TO 10
J-IE-I.1
SLI)-SL(I)-S(I ,J)*SVAL
SCI ,J)-0.O

10 CONTINUE
S(IE,1 )m1.0
SLCIE)-SVAL
I-I B
DO 20 II-2,NHBW
1-1.1
IF(I.GT.NEQ) GO TO 20

20 CONTINUE
RETUJRN
END

C
SUBROUTINE MV(N,A,MAXE)

C***THE INVERSE OF MATRIX A(DIMENSION IS N)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(MAXE,MAXE),B(200),C(200)

NNuN-1
DO 360 M-1,NN

DO 300 1-1,M
C(I)-0.0
8(1 )-O.0
DO 300 J-1,M

300 CONTINUE
D-0.0
D0 310 I-1,M
DaD+A(K,I)*B(I)
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310 CONTINUE
D-A(K,K)-D
A(K,K)-1 .O/D
DO 320 1-1,M
A(I ,K)--B(I )/D

320 CONTINUE
DO 330 J-1,M
DO 330 I-1,M

330 CCJ)-C(J)eA(K,I)*A(I,J)
DO 340 J-1,M
A(K,J)-C(J)/D

340 CONTINUE
DO 350 I-l,M
DO 350 J-1,M

350 ACI,J)-A(I,J)-B(I)*A(K,J)
360 CONTINUE

R ETURN

C
SUBROUTINE DXDY(N ,DYX,DXY,EUV)

C***TO CALCULATE DX/DY AND DY/DX
IMPLICIT REAL*8(A-H,O-Z)
COMMON/UNIT1/BI1(260) ,B12(260),BI3(260),CI1(260) ,C12( 260),

1 C13(260)
DIMENSION BEC3),CE(3),EUV(6),DYX(2,2),DXYC2,2)
BE~i )-BI1(N)
BE(2)-BI2(N)
BE (3)- BI 3(N)
CE~i )-CIl (N)
CE (2 )-C 12(N)
CE(3)-CI3(N)
DO 50 1-1,2
DYX(I,1 )-0.
DrX(I,2)-O.
DO 50 J-1,3
IF(I .EQ. 1) K-2*J-1
IF(I.EQ.2) K-2*J
DYX(I,1 )-DYX(11)+BE(J)*EUJV(K)
DYX(I ,2)-DYXCI ,2)+CE(J)*EUV(K)

50 CONTINUE
DYX(1 ,1)-DYX(1.1 ).
DYX(2.2)-DYX(2,2)+l.
D-DYX(1 ,1 )*DYX(2,2)-DYX(l1.2)*DYX(2 .1)
DXY(1 ,1)-DYX(2,2)/D
DXY(2,2)-DYX(1 ,1 )/D
DXY(1 ,2)-DYXC1 ,2)/D
DXY(2,1 )--DYX(2,1)/D
R ETURN

C
SUBROUTINE NODE(NX,NY,XL,YL,NEQ)
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C***TO GENERIZE THE NODES OF THE ELEMENTS AND THE COORDINATES OF THE NODES.
IMPLICIT REAL*8(A-H,O-Z)
COMMON/UNIT1/BIi (260) ,B12(260) ,BI3(260) ,CI1 (260) ,C12( 260),
1 C13(260)

COMMON/UNIT3/XT(150),YT(150),NOD(260,3),VOT(260)
COMMON/CONST/NEM,NNM,NDF INPE
NX1-NX-1
NYl -NY-i
NEM-NX1 *NY1 *4
NNM-(2*NX-1 )*NY14.NX
NEQ-NNM*NDF
NOD( 1 ,1 )-NX~1
NOD(i ,2)-2
NOD(1 .3)-i
NOD(2, 1)-NOD( 1,1)
NOD(2,2)-NOD(1,3)
NOD(2 ,3)-2*NX
NOD(3,1 )-NOD(1 ,1)
NOD(3,2)-NOD(2,3)

NOD(3, 3),.2*NX.1
NOD(4,1)-NOD(1 ,1)
NOD(4,2)-NOD(3 .3)
NOD(4,3)-NOD( 1,2)
DO 50 I-i ,NX-2
DO 50 J-1,14
DO 50 K-1,3
II-I*4+J

50 CONTINUE
DO 100 I-i ,NY-2

DO 100 J-1,NX1*4

DO 100 K-1,3

100 CONTINUE
DX -XL/ NX 1
DY-YL/NY1
DO 150 N-1,NY
DO 150 I-1,NX

XTCNI)-(I-i )*DX
YT(NI)-YL-(N-1 )*DY

150 CONTINUE
DO 160 Mel ,NYi
DO 160 I-i ,NX1

YT(NI)-YL-DY*(2*N-1 )/2
160 CONTINUE

R ETURN
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C
SUBROUTINE STIFF(GSTIFT,NRMAX,NCMAX,GO.GAMA)

C***TO FORM THE STIFFNESS MATRIX
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION GSTIFT(NRMAX,NCMAX),PSI(2,2,6),BE(3),CE(3),
1PSI1(2,2,6),PSI2(2,2,6),EL~sTIF(6,6),DXY(2,2) ,T(2,2)
1 ,BC(6)

COMMON/UNIT1/BI1C260),BI2(26O),BI3(260),CII(260),C12(260),
1 C13(260)

COMMON/UNIT2/DCX(260) ,DCY(26O) ,DCXY(26o) ,DZO(260) ,DZ1 (260),
1 CX(260),CY(260),CXYC260),rX(260),rXY(26o),TY(26o),
I DXYTC26O,2,2),DYXT(260,2,2),QX1(260),QY1(260),QXY1(260),
I BQX1(260),BQY1(260),BQXYI(260),UT(150),VT(15o),
I PSITC26O,2,2,6)

COMMON/UNIT3/XT( 150) ,YT( 150) ,NOD(260, 3) ,V0TC260)
COMMON/CONST/NE1,NNM,NDF ,NPE
DO 4~5 N-i ,NE24
VOL-VOT(N)
BE(Cl)-BI 1(N)
BE (2) -BI 2(N)
BE (3)- BI 3(N)
CE(l1)-CI1 (N)
CEC2)-C12(N)
CE(3)-C13(N)
DO 50 1-1,2
DO 50 J-1,2
DXY(I ,J)-DXYT(NI1,J)

50 CONTINUE
51-1.
S2-0.
DO 65 IS-1,2
DO 70 IK-1,2
DO 70 IM-1,3
Ml -2*IM-1
M2-2*IM
PSI(IS,IK,M1)-(DXYC1,IK)*BE(IM)+DXY(2,IK)*CE(IM))*Sl
PSI(IS,IK,M2).'(DXY(1 ,IK)*BE(IM)+DXY(2,IK)*CE(IM) )*S2
PSIT(N,IS,IK.M1 )-PSI(IS,IK,M1)
PSIT(N,IS,IK,M2)-PSI (IS,IK,M2)

70 CONTINUE
51-0.
S2-1.

65 CONTINUE
GJ-DYXT(N,1 ,1 )*DYXT(N,2,2)-DYXT(N,1 ,2)*DYXT(N,2,1)
GG-GAMA*DL4G(G0.) .GO
T (1 ,1)-TX (N ) .0.
T(2,2)-TY(N)*GJ

T (2, 1) -T(1 .2)
DO 80 m-1,6
Do 80 K-1,2
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Do 80 1-1 2
PSI 1 K,I ,M)-O.
PS12(K,I ,M)-O.
DO 80 IS-1,2

1 +PSI(IS,I,M)*TCK,Is)

80 CONTINUE
Do 85 J-1.6
Do 85 M-1,6
ELSTIF(J ,M)-O.
DO 90 KaV,,2
DO 90 1-1,2

S1.PSI(I,K,J)*(PSI(I ,K,M).PSI(K,I ,M))
ELSTIF(J ,M)-ELSTIF(J,M)-SGG*Sl

90 CONTINUE
ELSTIF(J ,M)-ELSTIF(J ,M)*VOL

85 CONTINUE
DO 150 1-1,6
DO 150 J-1,6

1 (PSI(1,1,J).PSIC2,2,J))*GAMA*VOL
150 CONTINUE

DO 92 I-i ,NPE
HR-(NO(Nq,I)-l )*NDF
DO 92 II-i ,NDF
NR -NR .1
L- (1-1 ) *NDFI I
DO 94 J-1,NPE
NCL-(NOD(N,J)-1 )*NDF
DO 95 JJ-1,NDF
M-(J-1 )*NDF4JJ
NC-NCL+JJ+1-NR
IF(NC) 95,95,96

96 GSTIFT(NR,NC)-GSTIFT(NR,NC)+ELSTIF(L,M)
95 CONTINUE
9J4 CONTINUE
92 CONTINUE
45 CONTINUE

RETURN
EN~D

C
SUBROUTINE DZZ(OF,NRMAX)

C***TO CALCULATE DZ
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION DYX(2,2),GF(NRt4AX),DUV(6),PSI(2,2,6),
1 PSIl C2,2,6) .PSI2(2,2,6) ,PSI3(2 ,2,6) ,DC(2,2)
COMMON/UNIT2/DCX(26O),DCY(26O),DCXY(260),DZO(260),DZ1(260),
1 CX(260),CY(26O),CXY(260),TX(260),TXY(260),TY(26O),
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1 DXYT(260,2,2),DYXT(260,2,2),QX1'(260),QY1(260),QXY1(260),
1 BQX1(260),BQY1(260),BQXY1(260),UT(150),VT(150),
1 PSIT(260,2,2,6)

COMMON/UNIT3/XTC 150) ,YT( 150) ,NOD( 260,3) ,VOT(260)
COMMON/CONST/NEM,NNM ,NDF ,NPE
DO 150 N-1,NE1
DO 155 I-i ,NPE
NI-NOD(N .1)
DO 155 J-1,NDF

155 CONTINUE
DO 160 1-1,2
Do 160 K-1,2
DYXCI ,K)-DYXT(N ,I ,K)
DO 160 M-1,6
PSI (I ,K,M)-PSIT(N ,1,K,M)

1 60 CONTINUE
Cl -CX(CN)
C2-('Y(N)
Cl 2-CXY(N)
DD-C1 *C2-Cl 2*C1 2
VC1 -C2/DD
VC2-C1 /DD
VC1 2--Cl 2/DD
Do 165 M-1,6
DO 166 1-1,2
DO 166 IA-1,2
PSI1(1 ,IA,M)-O.0
DO 166 K-1,2

166 CONTINUE
DO 167 IA-1,2
DO 167 15-1,2
PS12(IA,IB,M)-0.0
DO 167 1-1,2

167 CONTINUE
Do 168 IA-1,2
DO 168 15-1,2

168 CONIUE M-S2(AI,)PS2IAM
165 CONTINUE

DO 170 IA-1,2
DO 170 15-1,2
DC (IA, 15)-a.
DO 170 M-1,6
DC(IA,IB)-DC(IA,IB)+PSI3(IA.IB,M)*DUV(M)

170 CONTINUE
DUI-VC1 *DC( 1,1 )+VC1 2*DC( 1,2)
DU2-VC12*DC(1 ,2).VC2*DCC2,2)
DU12-VC1'DCC1 ,2).VC12*DC(2,2)
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DU21-VC12*DC(1 ,1 ).VC2*DC( 1,2)
DZ-DU1 *DU1 '2. *DU1 2*DU21 +DU2*DU2
DZ-DSQRTCDZ)
DZ1 (N)-DZ
DCX(N)-DCC1 .)
DCYCN)-DC(2,2)
DCXY(N)-DC( 1,2)

150 CONTINUE
RETURN
EDD

SUBROUTINE RES (GO, GFINRMAX, GAMA)
IMPLICIT REAL*8(A-H,O-Z)

C***THE RESULTS OF DISPLACEMENT AND STRESSES FOR EACH STEP
COMMON/UNIT1/BI1(260),I2(260),B3(260),CI1(260),C12(260),

1 C13(260)
COMMON/UNIT2/DCXC260) ,DCY(260) ,DCXY(260) ,DZO(260) ,DZ1 (260),
1 CX(260),CY(260),CXY(260),TX(260),TXY(260),TY(260).
1 DXYT(260,2,2),DYXT(260,2,2),QX1(260),QY1(260),QXY1(260),
1 BQX1(260),BQYI(260),BQXY1(260),EJTC15O),VT(150),
I PSIT(260,2,2,6)

COMMON/UNIT3/XT( 150) ,YT( 150) ,NOD(260, 3) ,VOT(260)
COMMON/CC NST/NEM,NNM ,NDF ,NPE
DIMNSION DXY(2,2),DYXC2,2),EUVC6),GF(NRMAX),DUV(6)
DO 100 N-i ,NNM
UTCN)-UT(N)+GFC2*N-1)
VTCN)-VT(N)+GF(2*N)

100 CONTINUE
DO 110 N-i ,NEM
DO 120 I-i ,NPE
?iI-NOD(N ,I)

DLV(2*I )-OF(NI*2)
120 CONTINUE

DO 130 1-1,2
DO 130 J-1,2
DXY(I,J)-DXYT(N,I ,J)
DYXCI ,J)-DYXT(N,I ,J)

130 CONTINUE
GJ-OYX( 1,1 )*DYX(2,2)-DYX( 1,2)*DtX(2.1)
DJJ-0.OD+O
DO 135 m-i,6
DJJ-DJJ.(PSIT(N,1 ,1 ,M).PSIT(N,2,M) )*DUV(M)

135 CONTINUE
G-GAMA*DLOG( GJ )+GO
TA-QX1 (N)*G*DCXCN).GAMA*CX(N)IDJJ
TB-QY1(N).G*DCY(N).GAMA*CY(N)*DJJ
TAB-QXY1 (N)...0DCXY(N).GAMA*CXY(N)*DJJ
TlJ-rX(N)*GJ
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T2J-TY(N)*GJ
Tl 2J-TXY(N) *GJ
Di .DXY ( , 1)
D2-DXY( 2,2)
D12-DXY(1 .2)
D21-DXY(2,i)
Tl.D1*Di*TA,2.*Dl*D2i *TABI.D21 *D21*TB
T2-Dl12*Dl12*TA+ 2. *D 12*D 2*TAB+D 2*D 2*TB
T12-Dl2*DlTA+4D2*D21*TABD2*Dl*TAB+D2*D2i*TB
Fi-O.ODO

* F2-O.ODO
F12-O.ODO
F21 -0. ODO

* -~~ DO 140 M-1,6 ,)DVM
Fi-Fi+PSIT(N,i ,1,)DVM

* - F2.F2.PSIT(N,2,2,M)*DUV(M)
F12-Fl2.PSIT(N,i ,2,M)*DUV(M)
F21-F2i+PSIT(N,2,i ,M)*DUV(M)

1 40 CONTINUE
*H HiTlJ*Fl ,Tl2J*F21

Hi 2.T1J*Fl2+T2J*F2
H21.Tl2J*Fl+T2J*F21
H2-T1 2J*F 1 2+T2J*F2
TXJ-T1J.T1-(Hl.Hi)
TYJ-T2J+T2-(H2+H2)
TXYJ-'ri2J.T12-(Hl2.H2i)
CALL DXDY(NIIDYX,DXY,EUV)
GJI-DYX(i,1 )*DYX(2,2)-DYX(1 ,2)*DYX(2,i)

C
TX(N)-TXJ/GJi
TY(N )-TYJ/GJ1
TXY(N )-TXYJ/GJ1
DO 145 1-1,2
DO 145 J-1,2
DXYT(N,I,J)-DXY(I ,J)
DYXT(N,I ,J )-DYX(I ,J)

145 CONTINUE
CX(N)-DYX( 1,1 )*DYX( 1,1 )+DYX(2,1)*DYX(2, 1)
CY(N)-DYX(i ,2)*DYX(1 ,2)+DYXC2,2)*DYX(2,2)
CXY (N ) 'DYX( 1,1) DYX( 1,2) .DYX (2,1) *DYX(2 .2)
BQX1 (N)-QXi (N)
BQYl (N)-QY1 (N)
BQXY1 (N)-QXYi (N)

110 CONTINUE
RETURN
END

C
SUBROUTINE PF(GFP,IBDF,NR4AX,MAXD,CR1 ,AR1 ,NBDF)
IMPLICIT REAL*8(A-H,0-Z)

C***TO CALCULATE PLASTIC FORCES
COMMON/UNIT2/DCX(260) ,DCY(260) ,DCXY(260) ,DZO(260) ,DZi (260),
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CXC260),CY(260),CXYC260) TX(260).TXY(260) TY(260),
1 DXYT(260,2,2),DYXT(260,2,2),QX1(260),QY1(260),QXY1(26),
I BQX1(260),BQYI(260),BQXY1(260),UT(150),VT(150),
1 PSIT(260,2.2,6)

COMMON/UNIT3/XT(150),YTC15O),NOD(26O,3),VOT(2
60)

COMMON/CONST/NEM,NNM,NDF ANPE
DIMENSION ELQT(2,2),ELGFP(6),IBDF(MAXD),GFP(NRMAX)
DO 115 N-1,NEM
VOL-VOT(N)
ELD Z-D ZO (N)
D1-DXYT(N,1,1I
D2-DXYT(N,2,2)
D 12-DXYT (N, 1 2)
D21-DXYT(N,2,1)
SiDEXP(-AR1*ELDZ)
s1CR1* (S-i. )
QX -BQX1 (N) *S+DCX (N )*Sl
QY-BQY1 (N)*S+DCY(N)*Sl
QXY-BQXY1 CN)*S*DCXY(N)*Sl
QX1 (N)-QX
QYl (N)-QY
QXY1 (N)-QXY
ELQT(l,l) -D 1*D *QX +2. *D21 *QXY *D1+D 21*D 21*Q
ELQT 1 ,2)-D*D2QX+D2*D21*QXY+1*D2*QXY+D21 *D2*QY
ELQT(2 ,2)mDl2*Dl2*QX.2.*D2*D1 2*QXY+D2*D2*QY
ELQT(2, 1)-ELQT(1 .2)
DO 120 J-1,6
ELGFP(J)-O.
DO 120 1-1,2
DO 120 K-1,2
ELGFP(J)-ELGFP(J).PSIT(N,I ,K,J)*ELQT(K,I )*VOL

120 CONTINUE
DO 125 I-i ,NPE
NI-NOD(N,I)
DO 130 K-i ,NDF

DO 135 J-1,NBDF
NJ-IBDF(J)
IF (NII.EQ.NJ) GO TO 130

135 CONTINUE

130 CONTINUE
125 CONTINUE
115 CONTINUE

RETURN

CN

SUBROUTINE BC(TH)
C***TO CALCULATE BI,CI,AND AREAS

IMPLICIT REAL*8(A-H,O-Z)
COMMON/UNIT1/BI1(260),B12(260),B13(260),CI1(260).C12(260),
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C13(260)
COMMON/UNIT3/XT( 150) ,YT 1 50), NODC(260, 3) ,VOT(260)
COMMON/CONST/NEM,NNM,NDF ,NPE
DIMENSION BEC3),CEC3),XC3),Y(3)
DO 30 N-i ,NEM
DO 32 I-i ,NPE
NI-NOD(N ,I)
XCI )-XTCNI)
YCI )-YT(NI)

32 CONTINUE

DO 31 I-i ,NPE
J-I,1
IF(J .GT.NPE)J-J-NPE
K-J+l
IF(K.GT.NPE)K-K-NPE
BEC(I) -(Y(J)-YC(K) )/AREA
CE(I)-(XCK)-X(J) )/AREA

31 CONTINUE
BI I (N)-BEC1)
B12(N)-BE(2)
B1 3(N ) -BE (3)
Cl (N)-CE( 1)
C12 (N )-CE (2)
CI13(CN )-CE (3)
VOT(N )-AREA/2. *TH

30 CONTINUE
RETURN

C
SUBROUTINE DFSF(NX,NY,ITYPE,NBDF,NB.7)
IMPLICIT REAL*8(A-H,O-Z)
COMMON/UNITL4/IBDFC3O) ,VBDFC3O) ,IBSF (20) ,VBSF( 20)
IFCITYPE.EQ.O)GO TO 3000
NBDF-2*NX+NY-1 .NX
N BS -O
DO 3010 I-1,NX

VBDFC2*I-1 )-O.D.OO
IBDF(2*I)-I*2
VBDF(2*I)-1 .OD-03

3010 CONTINUE
DO 3020 I-i ,NY-1

VBDF(2*NX'I )-O.D+oo
3020 CONTINUE

DO 3030 I-i ,NX
IBDF(2*NX+NY-1.I)-(2*NX-1 )*CNY-1 )*2+2*I
VBDF(2*NX.NY-1 +1)-0.D+0O

3030 CONTINUE
GO TO 4000
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3000 NBD F -MX+NY
NBSF-4X
DO 401 -1,NX

VBSF (I) - I.OD-03
4010 CONTINUE

VB7( 1 )-5.OD-oU
VBSF(NX)-5.OD-04
DO '4020 I-1,XY

VBDF(I)-o.D+O
4I020 CONTINUE

DO '4030 I-I ,NX

VBDF(NY+I )-O.D*OO
4030 CONTINUE
'4000 CONTINUE

RETURN
END
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